
Neural Networks 45 (2013) 4–26
Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2013 Special Issue

Design of silicon brains in the nano-CMOS era: Spiking neurons,
learning synapses and neural architecture optimization
Andrew S. Cassidy a,1, Julius Georgiou b, Andreas G. Andreou a,b,∗

a Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
b Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus

a r t i c l e i n f o

Keywords:
Silicon brains
Neuromorphic engineering
Silicon neurons
Learning in silicon
FPGA neural arrays

a b s t r a c t

We present a design framework for neuromorphic architectures in the nano-CMOS era. Our approach
to the design of spiking neurons and STDP learning circuits relies on parallel computational structures
where neurons are abstracted as digital arithmetic logic units and communication processors. Using this
approach, we have developed arrays of silicon neurons that scale to millions of neurons in a single state-
of-the-art Field ProgrammableGate Array (FPGA).Wedemonstrate the validity of the designmethodology
through the implementation of cortical development in a circuit of spiking neurons, STDP synapses, and
neural architecture optimization.

© 2013 Elsevier Ltd. All rights reserved.
1. The computer and the brain

The brain is a massively parallel and efficient information
processing system, with a radically different computational
architecture from present day computers. Characteristics of neural
computation include event based processing, fine-grained parallel
computational units, robustness and redundancy, as well as
adaptation and learning, all done under severe constraints of size,
weight, and energy resources. This computational architecture
excels at lower-level sensory information processing such as
vision, and sensor–motor integration as well as cognitive tasks
such as speech and language understanding.

Over the last half century computer scientists, architects and
engineers have envisioned building computers that match the
parallel processing capabilities of biological brains. Fifty years
ago, the fathers of computer science Alan Turing (Turing, 1952)
and John von-Neumann (Neumann, 1958) looked to the brain for
inspiration in order to advance the science of computing.

Twenty-five years ago, the connectionist movement emerged
as an alternative approach to artificial intelligence for solving the
hard problems in perception and cognition. The central doctrine
in the connectionist movement is that the cognitive abilities of
the brain are a result of a highly interconnected network of
simple processing units. These simple non-linear computational

∗ Corresponding author at: Department of Electrical and Computer Engineering,
Johns Hopkins University, Baltimore, MD 21218, USA.

E-mail addresses: andrewca@us.ibm.com (A.S. Cassidy), julio@ucy.ac.cy
(J. Georgiou), andreou@jhu.edu (A.G. Andreou).
1 Now with IBM Research, Almaden, USA.

0893-6080/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.neunet.2013.05.011
units abstract the function of neurons while synapses abstract
the connections between neurons. The strength of the synaptic
connections in networks of such units is determined through a
learning algorithm. A two volume edited book-set by the ‘‘Parallel
Distributed Research Group’’ (McClelland, Rumelhardt, & Group,
1987; Rumelhart, McClelland, & Group, 1987) defined the research
agenda in the field of connectionist architectures and neural
networks in the decades that followed. At about the same time,
Carver Mead’s book ‘‘Analog VLSI and Neural Systems’’ (Mead,
1989) inspired a new generation of scientists and engineers to
explore hardware implementation of neural models in state-of-
the-art silicon integrated circuit technology. The book had a dual
objective: (i) to create a new design discipline for collective
computational systems using analog VLSI subthreshold CMOS
integrated circuit technology and (ii) to promote a synthetic
approach in the understanding of biology and the human brain.
This was the birth of neuromorphic design as an engineering
discipline.

1.1. Neuromorphic engineering: the formative years

‘‘Neuromorphic’’ electronic systems, a term coined by Carver
Mead in the late 1980s, describes systems that perform artificial
computation based on the principles of neurobiological circuits. In
the following two decades, inspired by Mead’s pioneering work
(Mead, 1990) and colleagues at Caltech, a large number of CMOS
neuromorphic chip designs have been reported in the literature.

These spanned awide range of designs from analog VLSImodels
of neurons (Arthur & Boahen, 2010; Hsin, Saighi, Buhry, & Renaud,
2010; Saighi, Bornat, Tomas, Le Masson, & Renaud, 2010; Yu,
Sejnowski, & Cauwenberghs, 2011) to silicon retina architectures

http://dx.doi.org/10.1016/j.neunet.2013.05.011
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neunet.2013.05.011&domain=pdf
mailto:andrewca@us.ibm.com
mailto:julio@ucy.ac.cy
mailto:andreou@jhu.edu
http://dx.doi.org/10.1016/j.neunet.2013.05.011


A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 5
(Boahen & Andreou, 1992; Mahowald, 1992), and retinomorphic
vision systems (Boahen, 1996), to attention circuits (Horiuchi
& Koch, 1999), and biomorphic imagers (Culurciello, Etienne-
Cummings, & Boahen, 2003) that abstract biology at a lower
level. Other mixed-mode designs (Andreou, Meitzler, Strohben,
& Boahen, 1995; Pardo, Dierickx, & Scheffer, 1998) and (Etienne-
Cummings, Kalayjian, & Donghui, 2001) have also implemented
silicon retinas and focal plane processing architectures that include
processing beyond gain control and spatio-temporal filtering,
including polarization sensing (Andreou & Kalayjian, 2002; Wolff
& Andreou, 1995). Most of the above bio-inspired sensors have
limited programmability as they employ analog computational
circuits at the focal plane.

The shortcomings of non-programmable analog architectures
motivated the exploration of analog vision chip architectures
with programmable functionality (Serrano-Gotarredona, Andreou,
& Linares-Barranco, 1999; Serrano-Gotarredona et al., 2009).
Programmable architectures for associative memory (Boahen,
Pouliquen, Andreou, & Jenkins, 1989; Pouliquen, Andreou, &
Strohben, 1997), pattern classification (Genov & Cauwenberghs,
2001; Karakiewicz, Genov, & Cauwenberghs, 2007) and audition
(Kumar, Himmelbauer, Cauwenberghs, & Andreou, 1998; Stanace-
vic & Cauwenberghs, 2005) have also been reported in the litera-
ture.

Programmable architectures have also been advanced by the
adoption of a standard interface between chips known as Address
Event Representation or (AER) in short. The time-multiplexed AER
bus (Boahen, 2000; Lin & Boahen, 2009; Mahowald, 1992; Sivilotti,
1991) is a popular interconnectmethod for neuromorphic systems.
Spike events from multiple channels are time-multiplexed onto
a digital AER bus, transmitted, and decoded at the destination
onto individual channels. Throughout this proposal, we use the
terms spikes, events, and spike events interchangeably. AER has
been used by many analog and digital spiking neural arrays,
as well as to communicate events from off-chip neuromorphic
sensors and even in 3D CMOS technology (Harrison, Özgün, Lin,
Andreou, & Etienne-Cummings, 2010). The EuropeanUnion project
CAVIAR (http://www2.imse-cnm.csic.es/caviar/) demonstrated a
board-level vision system architecture communicating using the
AER protocol (Serrano-Gotarredona et al., 2009). Variants of AER
to improve the efficiency of the protocol have also been proposed
(Georgiou & Andreou, 2006, 2007). A probabilistic approach to AER
has been exploited to perform computations in the address domain
(Goldberg, Cauwenberghs, & Andreou, 2001b).

Learning in silicon has also been pursued intensively in the
analog VLSI neuromorphic community. The early work by Dio-
rio and colleagues (Diorio, Hasler, Minch, & Mead, 1996, 1997),
the Field Programmable Analog Arrays (Sivilotti, 1991) and the
research program of Hasler (Hall, Twigg, Gray, Hasler, & Ander-
son, 2005) paved the way to floating gate MOS transistors in con-
figurable learning chips. Other designs employ dynamic circuits
for implementing learning in analog VLSI with excellent results
on small systems (Bartolozzi & Indiveri, 2007; Indiveri, Chicca, &
Douglas, 2004; Mahowald, 1992). This work has continued with
encouraging results for hardwaremodels that abstract higher-level
functions such as stimulus specific adaptation (Mill, Sheik, Indiveri,
& Denham, 2011) and working memory using attractor dynamics
(Giulioni et al., 2011).

Abstracting biology at a higher level, the Cellular Non-linear/
Neural Networks (CNN) approach (Chua & Yang, 1988) offered an-
other paradigm for an analog visual processor with programming
capabilities. In CNN architectures, information processing is im-
plemented through the evolution of a continuous-time non-linear
dynamical network with nearest neighborhood connectivity. The
CNN–UM (Universal Machine) is one of the earliest systems (Roska
& Chua, 1993) that implemented CNN programmable functional-
ity on a chip. Another example of CNN hardware implementation
merges a CNN–UM type processor and an imager (Carmona et al.,
1998; Dominguez-Castro et al., 1997). This system, while analog
internally, has a digital interface with on-chip 7-bit A/D and D/A
converters, improving the programmability and simplifying the in-
terface to digital computers (Cembrano et al., 2004).

Programmable analog VLSI circuits and systems aimed at large-
scale model simulation have also been under development in
the last decade. The Neurogrid architecture in Kwabena’s group
(Arthur & Boahen, 2010; Choudhary et al., 2012; Silver, Boahen,
Grillner, Kopell, & Olsen, 2007), the IFAT architecture (Goldberg,
Cauwenberghs, & Andreou, 2001a; Vogelstein, Mallik, Culurciello,
Cauwenberghs, & Etienne-Cummings, 2007), the PAX platform
(Renaud et al., 2010) and the FACETS wafer-scale computational
infrastructure (Bruederle et al., 2011) are notable projects in this
direction.

1.2. Neuromorphic engineering: the nano-CMOS Era

In 1986, Mead’s group at Caltech was employing bulk CMOS
technology with λ between 2.5 micron and 0.7 micron (p. 59
of Mead, 1989). A quick review of our own publications and
laboratory notebooks from that period, reveals that we were
fabricating chips in 4 micron Silicon On Sapphire (SOS)–CMOS
technology and in 3 micron p-well bulk CMOS. Alas! Twenty
five years later, with foundry CMOS technologies at the 45 nm
and 22 nm nodes, the neuromorphic engineering community
at large has not been able to capitalize on the benefits of the
(×10 000) improvements in digital MOS transistor area density to
engineer brain like structures and cognitive machines that match
the effectiveness and energetic efficiency of the human brain.With
the exception of the event-based, asynchronous vision sensors
(Lichtsteiner, Posch, & Delbruck, 2008) and subsequent design
(Posch, Matolin, & Wohlgenannt, 2011), the goals of endowing
modern computer systems with industrial-strength robust bio-
inspired sensoria or tackling the challenge of silicon cognition have
been unrealized. And even though our lack of knowledge about
the inner workings of brain function and behavior has contributed
to this chasm and is limiting us today, matching the information
processing capabilities of biological neural structures in state-of-
the-art silicon technology has remained an elusive dream despite
the stunning advances in microelectronics.

Even more elusive has been our quest to understand how to
achieve the energy efficiency seen in biological brains. One would
have thought that the research activities in the last two decades
would have brought us closer to both a deeper understanding of
brain function as well as to commercially-viable brain-inspired
information technology at the scale. However, this is not the case.
Many of the analog VLSI neuromorphic systems rely on analog
devices and as such, scaling the density of these components
(mostly MOS transistors and capacitors) did not follow Moore’s
law. Furthermore, the majority of neuromorphic hardware was
based on traditional ‘‘analog’’ circuit models of neurons and
synapses, a technology that does not offer flexibility in component
models, nor in their level of description; an aspect which impedes
rapid advances.

Mead advocated using analog transistor physics to perform
neural computation, directly mimicking the currents in neuron
ion channels (Mead, 1990), and speculated that an energy
savings of approximately 104 could be gained over comparable
traditional digital approaches. However the power dissipation of
neuromorphic systems did not benefit from technology scaling
either and our best circuits today hover between 10 and 100 nW
per computational cell. Each cell has typically one or two single
pole circuitswith twoor three current branches biased in the nano-
ampere current level. Even though one could argue the power
dissipation is manageable locally, the energy cost to send the

http://www2.imse-cnm.csic.es/caviar/


6 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
digital representation of the state from one chip to another on
the same board is high. It takes less than a femto-Joule of energy
to move one bit worth of charge through the source to the drain
of an MOS transistor in deep sub-micron CMOS technology, one
pico-Joule to move one bit of information across a 1 cm die, and
almost onehundredpico-Joules tomove it fromonedie to another!
(Cassidy & Andreou, 2012). This is a poor utilization of energy and
a direct result of the limitations of two dimensional integration
and the use of macroscopic components to interconnect chips.
Optical interconnects, while efficient at distances measured in
kilometers, have not been very helpful at short distances from a
power dissipation point of view; this may change in the years to
come with advances in silicon photonics and CMOS integration. In
a two dimensional array of cells that is typical in neuromorphic
electronic systems (feature maps), additional energy costs are
accrued in going from the two dimensional representation of data
to a one dimensional stream on the periphery of the die for inter-
chip transmission.

Without exception, all of the analog VLSI systems reported in
the literature, small or large, rely on substantial digital commu-
nication infrastructures for functionality, ranging from single chip
micro-controllers (Goldberg et al., 2001a,b), to arrays of FPGAs
(Bruederle et al., 2011; Choudhary et al., 2012; Renaud et al., 2010;
Vogelstein et al., 2007) to even single board computers (Fasnacht
& Indiveri, 2011).

Unlike biological nervous systems, constrained by the limita-
tions of 2D CMOS technology, networks of electronic components
such as switches, capacitors and short wires in VLSI integrated cir-
cuits are only weakly connected to each other i.e. each component
is connected to only a few other components, often in a pipeline
structure. Architectures of modern processors and memories are
designed specifically to meet the constraints of limited connectiv-
ity in modern two dimensional integrated circuits, which feature a
dozen or so metallization layers.

We are now at a juncture point: an era where digital transistors
are nearly ‘‘free’’, and billion-transistor integrated Systems on a
Chip (SoC) are now commonplace. Capitalizing on the dramatic
advances in the scaling of the MOS transistor, analog silicon
retinas (Boahen & Andreou, 1992) and mixed-signal sensors
(Lichtsteiner et al., 2008; Posch et al., 2011) are being displaced
by all digital architectures. Sophisticated digital sensor arrays
and computational sensors are currently being developed to
extract and quantify the subtle and intricate information from
natural scenes in visible and infra-redwavelengths (Lin, Pouliquen,
Andreou, Goldberg, & Rizk, 2012; Lin, Pouliquen, Goldberg,
Rizk, & Andreou, 2011). Cellular neural network architectures
and computational imagers have been reported in standard
digital CMOS (Federico, Mandolesi, Julian, & Andreou, 2008;
Mandolesi, Julian, & Andreou, 2004) as well as experimental
3D CMOS technologies (Mandolesi, Julian, & Andreou, 2006).
Stream processor architectures for convolutional neural networks
(ConvNets) have also been recently reported in the literature
(Camuñas-Mesa et al., 2012; Pham et al., 2012). Digital FPGA based
bio-inspired architectures have also been reported in the literature,
for example recent work by Kestur et al., and references therein
(Kestur et al., 2012).

In this nano-CMOS era, the engineering of large-scale neuro-
morphic systems aimed at silicon cognition must also be carried
on at a different level of abstraction. Instead of using analog tran-
sistors to emulate the biophysics of neurons, we must move to a
higher level of abstraction, using digital transistors to perform the
arithmetic equivalent to the behavior of a neuron. Combined with
high-density digital memories and high-speed digital communica-
tions interconnects, this paradigmwill enable the implementation
of large-scale, flexible silicon neural arrays.

State-of-the-art Field Programmable Gate Arrays (FPGAs) are
often at the forefront of technological advances and the ability to
rapidly prototype digital systems makes them an attractive plat-
form for bio-inspired systems exploration in the nano-CMOS era.
The design of small systems and applications of digital Spiking
Neural Networks (SNNs) have already been reported in FPGAs
(Belhadj, Tomas, & Bornat, 2009; Cardoso, Diniz, & Weinhardt,
2010; Cassidy, Denham, Kanold, & Andreou, 2007; Koickal, Gou-
veia, & Hamilton, 2009; La Rosa et al., 2005; Pearson et al., 2007;
Rice, Bhuiyan, Taha, & Smith, 2009).

Research towards the engineering of custom large-scale digital
bio-inspired integrated circuits has also begun with encouraging
results. SpiNNaker is a System on a Chip (SoC), a massively-
parallel digital neuromorphic computing architecture (Khan et al.,
2008) based on an 18 core symmetric chip-multiprocessor where
each core is an ARM968. A SpiNNaker computer will consist of
a million microprocessor cores interconnected via a switching
network fabric. APIs and software have already been developed for
the SpiNNaker system (APT-Group, 2011a,b,c), hence an excellent
platform to explore bio-inspired algorithms and architectures
for cognitive computing. Another digital bio-inspired system
architecture for energy-aware cognitive computing is currently
being developed by IBM under the SyNAPSE project (Arthur et al.,
2012; Merolla et al., 2011; Modha et al., 2011).

Complementary to advances in large-scale hardware architec-
tures have been the advances in large-scale software simulation
and modeling environments such as Brian (Goodman & Brette,
2009), Nengo (Anderson & Eliasmith, 2004; Eliasmith & Stewart,
2011; Eliasmith et al., 2012), and Compass (Modha et al., 2011;
Preissl et al., 2012). The close coupling of these software envi-
ronments to the SpiNNaker architecture (Galluppi, Davies, Furber,
Stewart, & Eliasmith, 2012), Neurogrid (Choudhary et al., 2012),
FACETS wafer-scale system (Bruederle et al., 2011), and SyNAPSE
project (Modha et al., 2011) is likely to facilitate thewidespread ac-
ceptance of customarchitectures for large-scale simulations (Silver
et al., 2007) as an alternative to high performance computing (de
Garis, Shuo, Goertzel, & Ruiting, 2010; Markram, 2011).

In this paper we address the challenging task of engineering
silicon brains in the nano-CMOS era, with billions of transistors
and thousands of processors on a chip. We take a systematic
approach, revisiting Marr’s three levels of description and argue
that the computational theory of parallel processing under
physical constraints provides the theoretical underpinnings for
both understanding the brain and a new era of neuromorphic
engineering. We present a scalable neural architecture with
computationally efficient structures for spiking silicon neurons
and learning synapses. Finally we employ a cost function based
formulation of parallel processing under the physical constraints
of speed, energy, and area to optimize the neural architecture.
Experimental verification of the computational structures for the
optimization of the neural array, spiking neurons and Spike Timing
Dependent Plasticity (STDP) learning is done using state-of-the-art
field programmable gate arrays (FPGAs).2

2. Revisiting Marr’s vision: employing new eyes

In the previous section, we have argued that our progress
towards synthetic brain like systems with cognitive capability
matching human performance and energetic efficiency is seriously
hampered by difficulties in expressing brain-related functional
system-level models and algorithmic constructs at an appropriate

2 The Introduction in this paper is not meant to be a comprehensive review of
hardware implementations of neural systems over the last quarter century. The
interested reader is referred to a recent survey for a comprehensive overview (Misra
& Saha, 2010).



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 7
Parallel Processing Under Physical Constraints

Abstract
Computational

Structures

Physical
Computational

Structures

Brain
Architectonics

Network
Computation

Spikes
EPSP/IPSPc

Learning Synapses
LTDP/STDP

Laminar/
Columnar

Organization

Brains

Multiprocessor
Architecture

Fine-Grained
Parallelism

Probabilistic
Event Based
Information
Processing

Circuits that
Learn and Adapt

Nano and 3D CMOS

Silicon Brains

Computational
Theory

Fig. 1. Biological and silicon brains: layered levels of abstraction and information processing structures. Note that even though the abstract and physical layers are shown
in a hierarchy, they are done so only for the sake of clarity. In particular, the layered description for the physical computational structures in the brain are simplified in this
diagram. Churchland and Sejnowski offer a more accurate diagram for layers for the different physical scales in their seminal paper (Churchland & Sejnowski, 1988).
level of abstraction that can hide the details of their implementa-
tion. What we need is a multi-scale framework where information
processing structures at different layers in the two levels of ab-
straction have different interpretations of the processing element’s
type, capability, and complexity. Any approach that relies on a sin-
gle monolithic level of abstraction is bound to be slave to the un-
derlying limitations imposed by that level. For example, on analog
neuromorphic chips, models of higher-level cognitive function can
only be expressed in terms of networks of analog neurons,with any
other level of description is required to be implemented ad hoc on
the host digital computer or amicro-controller. Thus the prevailing
research approaches in neuromorphic engineering offer neither an
effective basis for exploring system-level models of brain function,
nor a practical foundation for future brain-inspired cognitive com-
puting technology.

To address the challenges of engineering large-scale silicon
brains, we need a fresh perspective, a new view, one that sys-
tematically allows to abstract brain computation into synthetic
structures. Quoting Marcel Proust, ‘‘Fundamental discoveries do not
necessarily rely on exploring new landscapes, but on employing new
eyes’’.

Conventional wisdom and the prevailing viewpoint in the
scientific community suggest that complex information processing
systems, natural or synthetic, are best considered at multiple
levels of organization. In the broadly defined task of ‘‘engineering
silicon brains’’, we must have a consistent framework to address
scientific challenges and exploit technological opportunities at the
different levels of description (see Fig. 1). DavidMarr in the preface
of his seminal book ‘‘Vision: A Computational Investigation into
the Human Representation and Processing of Visual Information’’
proposes a framework that has three levels of description to help us
understand visual processing in biological systems and to engineer
machines that see.

The three levels of organization as proposed by Marr are:

• Computational theory: What is the goal of the computation and
the logical strategy needed to carry it out?
• Representation and algorithm: How can the computation be

implemented and what input/output representations are
needed?
• Hardware implementation: What is the physical realization of

the algorithm and the architecture?

We paraphrase Proust and argue that what we need is ‘‘new
vision’’ and Marr’s vision on levels of organization (Marr, 1982),
provides the foundation for a fresh perspective on parallel
processing, ‘‘the computer and the brain’’.

At the level of computational theory, we suggest that the
general theme of parallel processing under physical constraints could
provide the theoretical foundation for understanding information
processing in both the brain and in massively parallel computing
systems. Thus a principled approach that links the algorithmic
aspects and costs of parallel processing to the constraints imposed
by the physical hardware in the physical structure could provide a
fundamental foundation for further understanding the brain and a
powerful principle for engineering and architecting future brain-
inspired computing machinery. This will be further elaborated in
following sections of this paper (Sections 3 and 6).

At the level of representation, in neural computation, the
temporal dynamics of spiking neurons encode information. Spikes



8 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
in biology or digital events in silicon systems can encode graded
(analog) signals in time while at the same time employing the
robustness of binary signaling. At this level we design abstract
computational structures optimized for minimum energy that
exploit spike-event based representations to compute likelihoods
in graphical probabilistic models of inference and cognition. Such
a probabilistic event based approach that was first proposed and
used in engineered systems in (Goldberg et al., 2001a,b) provides
a principled description of event generation rules that maximize
the information transfer, while limiting the number of energy
expensive events (spikes) (Laughlin & Sejnowski, 2003; Schreiber,
Machens, Herz, & Laughlin, 2002), that need to be communicated
between successive layers in a neural architecture. Using the
digital abstraction, neural computation can readily take on a
variety of computational models including the Leaky Integrate
and Fire and dynamical Izhikevich neural models, as elaborated
in Section 4. In this work, models of learning take on the STDP
representation, a Hebbian learning rule, described in Section 5.

At the level of implementation, the physics and chemistry im-
posed by the underlying substrate define the constraints for the
micro-architectural elements, whether real neurons in biological
tissue or silicon neurons in nano-CMOS technologies. It is at this
level of description that the information processing elements of bi-
ological tissue are likely to differ substantially in form and function
from those implemented in nano-CMOS technology. At this level,
attempts to draw analogies in the physical implementations are at
best superficial. So long as we are aware of the fundamental dif-
ferences in the underlying substrates, we are assured to stay away
from the perilous paths that impeded our progress towards the en-
gineering of large-scale silicon brains and cognitive machines over
the last two decades.

In Sections 4 and 5, we detail multiplexed digital circuits, stor-
ing the neural state in dense localmemory andmultiplexing neural
computation on shared arithmetic logic units. This approach uses
the high frequency (relative to biological computation) of silicon
circuits to efficiently implement the massive parallelism required
for implementing large-scale neural computational architectures.
The proposed holistic approach towards the engineering of silicon
brains forms the foundation for a new research direction in brain-
inspired architectonics. It relies on a combination of multi-scale
abstraction from algorithms to representation and the architec-
ture. At each level, the computational structures rely on consistent
contracts between the levels of abstraction and the layers of de-
scription.

3. Parallel processing under physical constraints

Biological information processing systems employ dynamic
matter and learning at all levels in an amazing network of
complex structures of different scales, from the nano to the
micro and macro. In the human brain, a physical structure with
approximately 100 billion neurons and 100 trillion synapses,
parallel processing must be the norm rather than the exception.
Indeed parallel distributed processing is found at all levels of brain
function from molecules to networks to social behavior.

Some insights into the brain’s organization and parallel
processing function can be gained by considering the way the
visual representation of the natural world is organized through
cortical maps. Early work by Hubel andWiesel, suggested stimulus
modalities are mapped in orthogonal dimensions: the ice-cube
model for stimulus representation in V1 (Hubel & Wiesel, 1977).
However, this simple and elegant idea does not scale beyond
two stimulus features and into natural visual environments that
involve a plethora of stimulus features.What is needed is a process
by means of which multiple features such as orientation, spatial
frequency, ocular dominance, and so on, can be mapped into
the two and delta (2D+delta) dimensional patches on the surface
of the cortex (V1) (Das, 2000). An important insight into this
challenging problem emerged out of experimental work in the
visual cortex of the cat where it was shown that maps in the
visual cortex are optimized for uniform coverage (Stepanyants,
Hof, & Chklovskii, 2002; Swindale, Shoham, Grinvald, Bonhoeffer,
& Hübener, 2000). Through a process of development and self-
organization, brains find an optimal solution in the presence
of two conflicting requirements: spatial coverage and stimulus
representation. More specifically, to maximize coverage and
parallel processing, every location in the physical space must be
mapped to all possible combinations of stimulus features. At the
same time, this must be done under constraints imposed by the
physical structure; i.e. the wiring length of axons must be kept as
short as possible to minimize both the metabolic costs (energy)
and the time to respond (delay). The result is a smoothness of
mapping or locality of reference; i.e. neurons with similar stimulus
response properties lie in close proximity on the cortical surface,
with local discontinuities arising from the multi-feature mapping.
Similar self-organizing principles are found in the structural and
morphological organization of neurons in the brain, taking into
account both the functional and the underlying physical and
chemical constraints of the computational machinery (Chklovskii,
Mel, & Svoboda, 2004; Varshney, Sjöström, & Chklovskii, 2006;
Wen & Chklovskii, 2008; Wen, Stepanyants, Elston, Grosberg, &
Chklovskii, 2009).

3.1. From brain architectonics to silicon neural architectures

Parallel processing silicon neural arraysmust be optimizedwith
respect to two performance objectives: speed (inverse of delay)
and energy. Motivated by the need for a design methodology
to address architectural space exploration in multi-scale parallel
architectures,we have derived a simple objective function (Cassidy
& Andreou, 2012) to link parallel processing in an information
processing system of N units, to the costs of energy and delay,
the traditional metrics in integrated circuits (Mead & Conway,
1979). The foundation of our model is a cost function formulation
of Amdahl’s law (Amdahl, 1967), that employs parameterized
models of computation and communication to represent the
characteristics of processors, memories, and communication
networks. The interaction of these micro-architectural elements
within a parallel processing framework defines global system
performance in terms of energy–delay cost.

Starting from Amdahl’s original intuitive argument, we can
derive a generalized cost function that combines a delay cost
function and an energy cost function according to the energy–delay
product, to obtain a generalized objective function JED that links the
gains from parallel processing to delay and energy costs (Cassidy &
Andreou, 2012).

The equation below is an extension of the work in Cassidy and
Andreou (2012) to address parallel processing in an asymmetric
multiprocessor architecture such as the one necessary for brain-
inspired multiprocessor systems. Using a summation over the
processor types p of different performance, the objective function
JED can be written as:

JED =


K−1
j=0

Fj
P−1
p=0

Njp


M−1
i=0

GijpDijp

−1


×


K−1
j=0

Fj
NjA


h∈{A,I}

P−1
p=0

Njhp

M−1
i=0

GijhpEijhp

γ

. (1)



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 9
In the inner summations, each of the algorithm fractions Fj, are
subdivided into constituent cost components. Gijp is the fraction
of Fj that incurs the ith cost component Dijp or Eijh. Fj and Gij are
fractions, such that

K−1
j=0 Fj must equal 1 and

M−1
i=0 Gijp must

equal 1. The ijth delay isDij and the ijth energy cost is Eijh for the jth
fraction of the algorithm and the active or idle unit, h ∈ {A, I}. The
fraction Fj is dividedbyNjA units in duration, butmultiplied byNjA+

NjI computational units operating in parallel. Njp is the number of
units of type P assigned to the jth fraction of the algorithm. The
innermost summation in the energy term is the average Energy-
Per-operation of a computational unit h ∈ {Active or Idle} :
EPIph =

M−1
i=0 GihpEihp.

In the outer summation of the delay term,Nj in the denominator
reflects the speedup in delay obtained by parallelizing the
algorithm over N units. In the middle summation of the energy
term, Njh is the number of active or idle units during the jth phase
of the algorithm. However, while delay is reduced by a factor of N ,
energy expended is increased by a factor of N , since there are now
N computational units running in parallel. This results in the Nj in
the inner summation.

Adding an exponential weighting parameter γ to the energy
side of the equation allows energy and delay to be unequally
weighted. In the realm of energy efficient design, two metrics
are typically used for design evaluation: the energy–delay prod-
uct ED and energy–delay squared ED2. The energy–delay product
equally weights the contribution of delay and energy, while en-
ergy–delay squared doublyweights the contribution of delay in or-
der to emphasize performance over energy savings. In our model,
using γ = 1 results in the standard energy–delay product, while
with γ = 0.5, the contribution of delay is twice as large as the con-
tribution of energy, analogous to the energy–delay squaredmetric.

Efficient parallel computational architectures are developed
by minimizing this cost function in order to maximize the
performance of the architecture. The cost function is minimized
by: maximizing system parallelism and minimizing the energy
and delay costs of operations within the constituent cores. In
Section 6 we will use the theoretical framework described in this
section to explore the architectural space of spiking neural arrays
implemented in FPGAs. However, prior to that, we must define
the organization of the spiking neural array as well as the basic
computational structures for spiking neurons, the interconnect
fabric and local learning machinery.

4. Spiking neural arrays

In this section we present an architecture for implementing
large-scale arrays of digital neurons. Although our architecture
targets both FPGAs and standard cell ASICs in the current work,
we report results from commonly available high-end FPGAs that
have the advantage of reprogrammability. ASICs on the other
hand, have higher density and operational performance as well
as low power operation, with allocation of resources (RAM and
logic) custom to the task at hand. However, FPGAs are amenable
to reconfiguration hence suitable for the experimental work on
architecture exploration that is discussed in the next section.
Furthermore, advances in software tools allow the compilation of
hardware design using high-level design languages (Cardoso et al.,
2010).

4.1. Spiking neural array architecture

A system-level block diagram of the spiking neuron array and
its interfaces is depicted in Fig. 2. Spike events enter and exit the
system from the left side of the diagram. Events are communicated
using the AER (Address Event Representation) protocol, a means of
Fig. 2. Spiking neural array architecture.

Fig. 3. Multiplexed spiking neuron block diagram.

multiplexing data from multiple sources onto a single shared bus.
Events traverse the architecture in Fig. 2 in a clockwise direction.
Each incoming event looks up a synaptic weight value. That weight
is sent to the appropriate neuron in the array based on the event
address. When a neuron generates an event, it is tagged with the
address of the generating neuron. The re-mapper translates the
generating address into a set of destination addresses, which are
sent back into the neuron array.

The high-level architecture is derived from our earlier work
(Cassidy & Andreou, 2008; Cassidy et al., 2007). One of the differ-
ences in the architecture presented in this paper is that the synap-
tic weight RAM and the re-mapper RAM are both implemented in
SRAM external to the FPGA. The latter modification allows utiliza-
tion of a much higher total RAM capacity as compared to internal
to the FPGA. In addition, this leverages the increasing density ben-
efits of commercial SRAM technology. The targeted system in this
work is the Nallatech FSB accelerated computing platform (Nallat-
ech, 2008), with an FSB expansion module based on a Xilinx Virtex
5 SX240T FPGA (Xilinx, 2011) and twoGSI Technologies 36MbQDR
SRAMs (GSI, 2011).

Each neuron in the array is a computational engine (or
core) composed of local SRAM and an arithmetic pipeline for
computation. One key feature of the neuron, introduced in our
earlier work, is neural state multiplexing (Cassidy & Andreou,
2008). In this scheme, the computation for multiple neurons is
multiplexed onto a single physical neuron. This requires two local
memories, one to store the state for the neurons that are not being
currently computed (the state cache), and one to align input events
with the proper timeslot in the frame (the input aligner cache).

The multiplexed neuron block diagram is shown in Fig. 3. The
state cache is a dual port RAM so that the pre-computation neuron
state is read out of the cache at the same time as the post-
computation neuron state is written back into the cache. The input
aligner cache has two banks of dual port RAM. The two banks
implement a ping-pong buffer to decouple writing new events



10 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
Fig. 4. Frame processing example.
from reading out current events. New events are written into one
bank while current events are read out from the other. Writing
new events is a read–modify–write operation using both ports of
the RAM bank in order to prevent events in the buffer from being
overwritten. Reading out current events also uses both ports of the
RAMbank. The current value is read out of one port,while the other
port clears the RAM location (one clock cycle delayed) removing it
from the circular buffer.

Frame-based processing of multiplexed neurons effectively
time multiplexes several neuron state computations onto a single
neural arithmetic pipeline. Every physical neuron instantiated
in the array computes the independent state of M multiplexed
neurons, where M is the frame size. Fig. 4 illustrates the frame
processing paradigm forM = 8 multiplexed neurons.

The input state for frame T0 is read out of the state cache
and the input aligner simultaneously, and sent to the arithmetic
pipeline. The results from the arithmetic pipeline are available
after a few clock cycles and are written back into the state
cache. All computations are fully pipelined, so that operations are
performed every clock cycle and there are no stalls in the datapath.
Computation on frame T1 begins exactly one cycle after frame
T0 enters the pipeline. The maximum frame size is constrained
only by the on-chip memory required to store the neural state
variables. The frame size also affects the computational speedup
of the system, in an inversely proportional relationship. If the
frame size doubles, the speedup is halved. In order to maintain
full-rate processing, the minimum frame size should be greater
than the pipeline depth (five clock cycles). The neuron blocks are
logically arranged in a linear array and the communication fabric
is comprised of a tree arbiter which multiplexes events onto the
shared AER bus.

4.2. Dynamical spiking silicon neurons

The design space of spiking neuronmodels spansmany decades
of research, beginning with Hodgkin–Huxley’s pioneering work in
1952 (Hodgkin & Huxley, 1952). Their detailed approach models
neuron behavior using four differential equations to represent the
membrane dynamics and the non-linear conductances of three
types of ion channels. While this detailed approach produces a
biophysically accurate model, it is computationally intensive and
requires the estimation of a large number of free parameters.
Since then, numerous models have been made in order to reduce
the complexity of the model. Typically however, reducing the
model complexity also reduces the biophysical accuracy and
the number of neural behaviors that can be reproduced by
the model. The Leaky Integrate and Fire (LIF) neural model is
popular because of its relative simplicity, however, it cannot
reproduce many complex neural behaviors. Izhikevich reviewed
ten models including Hodgkin–Huxley and LIF, comparing them
with his own approach (Izhikevich, 2003, 2004). His simplified
approach (hereafter denoted as ‘‘IZH’’), contains only two coupled
differential equations and yet is able to reproduce many complex
neural behaviors. We adopt the IZH model as a computationally
efficientmodel for neurons requiring complex dynamical behavior.
4.2.1. Izhikevich neuron model
The dynamics of the Izhikevich spiking neuron model are de-

fined by two coupled differential equations, and a reset condition.
The variable v represents the voltage across the neural membrane
and u is a slow variable, representing membrane recovery.

v′ = 0.04v2
+ 5v + 140− u+ I (2)

u′ = a(bv − u). (3)

The synaptic input is I and a, b are parameters controlling the dy-
namical behavior of the neural model. The reset condition is de-
fined by:

if v ≥ +30 mV, then

v ← c
u ← u+ d (4)

where c, d are parameters controlling the neural reset behavior.
An example of the complex behavior achievable with the IZH

model is tonic bursting. (Refer to Izhikevich, 2003, 2004 for 19
other neural behaviors produced by the IZHmodel.) Fig. 5(a) shows
the membrane voltage (‘v’ parameter) for a burst of neural spikes.
The spike firing threshold is 30 mV, depicted by the green line.
The dynamics of the ‘v’ variable versus the ‘u’ variable is plotted
in Fig. 5(b), showing the same burst of spikes in v–u phase space.
Phase space is an effective method for visualizing the system
dynamics. The nullclines are shown in blue (‘v’ is a parabola and
‘u’ a sloping line). The phase space diagram depicts the system
starting at t = 100 with a step input and ending at t = 200. From
the initial rest potential (v = −75 mV), the system moves in the
positive ‘v’ direction until it crosses the threshold (green vertical
line) and fires a spike. Upon firing a spike, the system is reset into
an unstable region, againmoving in the positive ‘v’ direction, firing
another spike. As this bursting behavior continues, the ‘u’ variable
increases until the system is finally reset into a region that moves
the system away from the firing threshold (inside the parabola).
The system will slowly move along the ‘v’ nullcline, until it is
once again swept into the firing region, generating tonic bursting
behavior.

The first implementation of the IZH model in an FPGA was
reported in La Rosa et al. (2005). From the little detail reported
in the publication describing the work, a single neuron was
implemented, running at 1 MHz. This is far from sufficient for
large-scale neural simulation acceleration or scalable neural array
implementation. Another design uses the Izhikevich model for
inspiration, implementing a similar dynamical neuron in analog
VLSI (Wijekoon & Dudek, 2006). The fast and slow state variable
paradigm is employed (analogous to ‘v’ and ‘u’ in IZH), creating a
neuron that exhibits oscillatory and bursting behavior. However,
thiswell principled design suffers from the disadvantages common
to all analog VLSI approaches (see Section 1).

We implemented the IZH model using fixed point arithmetic.
Numeric values were constrained to an 18-bit representation,
based on the 18 × 18 fixed point multiplier cores in the FPGAs.
We choose a 10.8 fixed point representation as a balance between
dynamic range (10-bit integer portion) and precision (8-bit
fractional portion).



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 11
0

-100

-50

50
v

80 100 120 140 160

time (ms)

tonic burst -- membrane voltage

-20

0

20

40

u

-100 -50 0 50
v

(a) Tonic burst—membrane voltage. (b) v–u phase space.

Fig. 5. Dynamical system description for the Izhikevich neuron model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 6. IZH neuron block diagram.

In addition, significant implementation advantages can be
gained if powers of two arithmetic can be used for multiplication
and division. With this motivation, we modified Eq. (2) by
multiplying the coefficients by 0.78125, for an approximate
powers of two representation of two coefficients in the equation,
(0.78125× 0.04 = 1/32 and 0.78125× 5 = 3.91 ≈ 4).

v[n+ 1] = v[n] +
1
32

v2
[n] + 4v[n]

+ 109.375− u[n] + I[n] (5)

u[n+ 1] = u[n] + a(bv[n] − u[n]). (6)

These equations model the same system behavior as Eqs. (2) and
(3) above, however, the units have effectively been modified. In
addition, the constants a, b, c, d must also be slightly modified
from the values of the original IZH model. Lastly, the differential
equations are implemented in discrete time.

Using this approach, we created a multiplexed neuron as a
base element for creating large-scale neural arrays. The physical
neuron implements the arithmetic computations required for the
IZHneuralmodel, while localmemories buffer the state ofmultiple
neurons between operations, in a time-division multiplexed
manner. A block diagram of an individual physical IZH neuron is
shown in Fig. 6. The neuron state computations are performed
in the ‘v’ and ‘u’ arithmetic pipelines. Frame-based processing of
multiplexed neurons is supported by the two dual port memories,
‘‘v-store’’ and ‘‘u-store’’, as well as the input alignment block. The
dual port memories buffer the multiplexed neuron state between
frame iterations. The input alignment block aligns asynchronous
input events with their proper timeslot in the frame.

The IZH neuron behavior described in Eqs. (4)–(6) is imple-
mented using two parallel arithmetic pipelines, one for the ‘v’ dy-
namics, and one for the ‘u’ dynamics. These pipelines are shown
in detail in Fig. 7. The arithmetic operations in Eqs. (5) and (6)
are assigned to arithmetic functional units and arranged accord-
ing to the standard algebraic order of operations. The data flows
Table 1
Device utilization: Xilinx Spartan XC3S1500.

Resource Percent utilization (%) Total available

Slice FF’s: 64 26,624
4-LUTs: 78 26,624
2 kB RAMs: 34 32
18× 18 mults: 100 32

directly through the tree from input operands to resulting output.
The arithmetic trees maximize the parallelism in time (pipelining)
and space (parallel arithmetic units). The computations in each
arithmetic tree are fully pipelined to support full-rate dataflow
processing. The pipeline is kept full by the frame based processing
of blocks of multiplexed neuron state.

We made three specific optimizations for the algorithm. First,
the constant coefficients 4 and 1

32 in Eq. (5) are implemented as
static shift operations (2’s complement arithmetic). Second, since
multipliers are a scarce resource in FPGAs, the multiplication of
the parameter ‘a’ in Eq. (6) is implemented using a shift and
add/subtract operation. This limits the resolution of the values that
‘a’ can take on, however, it is efficiently implemented in logic.
Third, the multiplication operations in both pipelines (Eqs. (5) and
(6)) share the same physical multiplier, via time multiplexing. As
a result, the net throughput of the pipelines is halved (i.e. if the
FPGA runs at 80 MHz, new results are generated by the pipelines
every 40 MHz). This tradeoff is also made in order to optimize the
utilization of the scarce multiplier resource.

We implemented the silicon spiking neural array in a Xilinx
Spartan XC3S1500 FPGA (Xilinx, 2011), hosted on an Opal Kelly
XEM-3010 FPGA integration module (Opal-Kelly, 2012). The
integration module has a USB 2.0 interface to a host PC. High-level
control and interface to the design is through MatLab or Visual
C++.

The device utilization is summarized in Table 1, and is roughly
balanced for each resource (with the exception of 2 kB RAMs). Ul-
timately, the number of physical neurons that can be instantiated
is limited by the number of 18 × 18 multiplier cores available on
the device. The number of multiplexed neurons that can be multi-
plexed onto each physical neuron is limited by the amount of dis-
tributed memory available (LUT resource).

In the XC3S1500 FPGA, we have 32 physical neurons with 8
multiplexed neurons each, for a total of 256 neurons in the array.
With a state of the art FPGA, the number of neurons can be
increased by at least two orders ofmagnitude. A current generation
Xilinx XC7VX980 FPGA has 3600 multipliers and 54 Mb of internal
SRAM. Including multiplexed neurons, these devices enable on the
order of one million independent dynamical neurons per chip (see
Section 6).



12 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
(a) ‘v’ pipeline. (b) ‘u’ pipeline.

Fig. 7. IZH neuron arithmetic pipelines.
50

-50

-100

0

m
em

br
an

ce
 p

ot
en

tia
l (

V
)

0 100 200 300 400
time (ms)

tonic spiking

m
em

br
an

ce
 p

ot
en

tia
l (

V
)

0 100 200 300 400
time (ms)

50

-50

-100

0

tonic bursting

(a) Tonic spiking. (b) Tonic bursting.

m
em

br
an

ce
 p

ot
en

tia
l (

V
)

time (ms)

50

-50

-100

0

0 100 200 300 400

phasic spiking

m
em

br
an

ce
 p

ot
en

tia
l (

V
)

time (ms)

phasic bursting
50

-50

-100

0

0 100 200 300 400

(c) Phasic spiking. (d) Phasic bursting.

Fig. 8. Dynamical IZH neuron behavior.
Although the IZH neural array operates at 80 MHz in the Xilinx
Spartan XC3S1500 FPGA, the multipliers are time multiplexed
between the ‘v’ and ‘u’ arithmetic pipelines, so that the effective
processing rate is 40MHz. A 40MHz clock period is 25 ns, far faster
than the neurobiological timescale. Since multiplexed neurons are
processed in frames, it takes 8 clock cycles or 200 ns to process
one frame of 8 neurons. Then, assuming a biologically realistic
simulation timescale of 1 ms per clock cycle, our silicon neural
array simulates spiking neural networks 5000 times faster than
biological real time.

The IZH neural array was designed and simulated in VHDL,
prior tomapping onto the FPGA. Cycle and bit accurate simulations
of the VHDL (ModelSim) capture the system functionality. Fig. 8
depicts the dynamical behavior of a single IZH neuron in four
different test cases, tonic spiking, tonic bursting, phasic spiking,
and phasic bursting. All four test cases are in response to a step
input (at 100 ms). Tonic spiking and bursting have persistent
activity for the duration of the step input, while phasic spiking and
Table 2
Fixed pointmodel parameters (TS= Tonic Spiking, TB= Tonic Bursting, PS= Phasic
Spiking, PB= Phasic Bursting).

a b c d I

TS: 1
64 0.156250 −50.508 6.2500 10.9375

TB: 1
64 0.234375 −39.063 3.9062 0.58594

PS: 1
64 0.273438 −50.508 6.2500 11.7188

PB: 1
64 0.273438 −42.969 1.1719 0.78125

bursting generate activity only at the onset of the step input. The
parameters for the four test cases are shown in Table 2. They were
obtained from (Izhikevich, 2004) and modified for our fixed point
implementation.

An estimate of the computational power of the IZH neural ar-
ray is as follows. Eqs. (4)–(6) are implemented with 16 fixed point
arithmetic operations: 2 multiplications, 9 additions/subtractions,
1 compare operation, and 4 shift operations. All of the operations



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 13
are fully pipelined and parallel. Thus running at 40 MHz, each
pipeline pair computes: 16 × 40 MHz = 640 MOPS. There are 32
pipelines in the array, so the FPGA is performing: 32 × 640 M =
20.48 GOPS. This is substantial performance for a medium sized
FPGA. Also note that 20.48 GOPs is sustained performance—not
maximum performance as is reported by many performance mea-
sures. The FPGA sustains 20.48 GOPS of computation, guaranteed
by full data flow processing. This computational measure also only
includes the arithmetic computations in the design. The routing,
spike generation, and other array operations are performed en-
tirely in parallel on the FPGA, but require additional computational
cycles if run on a microprocessor.

4.2.2. Leaky integrate and fire neuron model (LIF)
The membrane voltage dynamics of the LIF neuron model is

defined by the following equations. The equation for synaptic
integration is:

vs(n) =
Ns
i=1

wixi(n) (7)

where vs is the synaptic input contribution to the membrane
potential,Ns is the number of synapses,wi are the synapticweights,
(positive wi for excitatory synapses, and negative wi for inhibitory
synapses), and xi(n) ∈ {0, 1} denotes the arrival of a presynaptic
spike on input i at time n. The neuron firing dynamics are defined
by:

v(n) =


vrst if vs(n) > vth

or to < tabs_r
v(n− 1)+ vs(n)− vL(τ ) otherwise

(8)

where v(n) is the membrane potential, v(n− 1) is the membrane
potential at the previous time instant, vrst is the reset potential,
vth is the threshold potential, vL(τ ) is the exponentially decreasing
leak voltage with time constant τ , to is the time since the last
output spike event, and tabs_r is the absolute refractory period. The
relative refractory function is defined as:

vth = vth + vrel_r(to) (9)

where vrel_r is an additional potential added to the threshold
potential. This models the decreased probability of firing a spike
shortly after an output spike has been generated. vrel_r is set to a
constant at the time of the output spike event and then decreases
linearly with time until it reaches zero.

Using the same neural array architecture, we can substitute
in different neuron models, changing the biophysical-level of
emulation as well as the implementation complexity. The LIF
neuron is a simplification over the IZH model. Its reduced
complexity of arithmetic implementation and single state variable
means that area to implement each neuron (physical and
multiplexed) is minimized, and the dependence on the FPGA
multiplier is also eliminated. This enables the overall neural array
to scale to even greater neuron densities.

As shown in the LIF neuron block diagram (Fig. 9), there are
three primary operations in the arithmetic pipeline, an exponential
leak on the membrane potential, synaptic integration, and firing.
The fire operation compares the computed value of the membrane
potential with a threshold. If the value is above the threshold,
a spike event is generated, and the membrane potential is reset
to vrst.

A block diagram of an individual physical LIF neuron is shown
in Fig. 9. The membrane potential of the integrate and fire
neuron is implemented as a 16-bit digital accumulator. When the
accumulator exceeds a programmable threshold, a spike is output
from the block and the accumulator is reset. The accumulator
begins integrating again after the absolute refractory period.
Fig. 9. LIF neuron block diagram.

Table 3
Device utilization: Xilinx Spartan XC3S1500.

Resource Percent utilization (%) Total available

Slice FF’s: 28 26,624
4-LUTs: 44 26,624
2 kB RAMs: 34 32

The programmable relative refractory value increases the spike
threshold for time tabs_r , decreasing the probability of firing
another spike. Another programmable value sets the exponential
decay of the accumulator, emulating a shunting leak current in the
neural membrane.

We implemented the silicon spiking neural array in a Xilinx
Spartan XC3S1500 FPGA (Xilinx, 2011), hosted on an Opal Kelly
XEM-3010 FPGA integration module (Opal-Kelly, 2012). The initial
design operates at 50 MHz. It was implemented in approximately
4000 lines of VHDL, requiring only 3 weeks of design and debug
time. The device utilization is summarized in Table 3.

A modular approach has led to subsequent redesigns with
improved clock frequency to 100 MHz with only a few days
of work. The 100 MHz clock period is 10 ns, far faster than
the biological neural spike timescale. If we assume a biological
simulation timescale of 1 ms per clock, then we can simulate
neural networks at 100,000 times faster than real time. Or, using
an appropriate multiplexing scheme, the speedup could be used
to simulate a greater number of neurons on a biological timescale.
This tradeoff aswell as the scaling of this architecture to truly large-
scale neuromorphic systems is detailed extensively in Section 6.

To compare the performance of our architecture with a general
purpose processor, we created a simple simulation modeling
spatio-temporal receptive field convolutions in the auditory cortex
using spiking neurons. The task consisted of 32 integrate and
fire neurons with 16 synapses each, computing the convolutions
over 100,000 timesteps. The average input spike rate per neuron
was 70.4 spikes per second and average output spike rate of 11.1
spikes per second. We coded the simulation in low-level C for the
processor, and we also ran the exact same task on our FPGA array
of 32 neurons with the same parameters and input dataset.

The single core 2.13 GHz Pentium 4 processor ran this
simulation in 45.5 ms (mean of 8 trials). The array of 32 FPGA
integrate and fire neurons, running at 100 MHz, computes the
same task in exactly 1.0 ms, a 45× speedup over the single core,
general purpose processor. This speedup is due to the parallelism
in the neural array (N = 32) as well as the special purpose micro-
architecture of the neural engines. Every operation is pipelined,
including control, datapath arithmetic, and memory operations.

The neural architecture and analysis presented in this section
also supports other neural models, such as the Izhikevich or Mi-
halas–Niebur (Mihalas & Niebur, 2009) neurons, by substituting
into the arithmetic pipeline the appropriate computations. With-
out loss of generality, in the remainder of the architecture-level
discussion, we use the LIF neural model.



14 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
5. Computational structures for STDP learning

Endowing large-scale neuromorphic systems with integrated
learning enables them to adopt new behaviors or adapt to new
stimuli. Furthermore, this opens possibilities for developmental
approaches where the system evolves to optimally solve problems
under relevant constraints. Thus, considerable research effort is di-
rected towards developing learning capabilities for neuromorphic
and other synthetic intelligent systems.

One learning method that has garnered substantial interest
recently is Spike Timing Dependent Plasticity (STDP) (Bi & Poo,
1998; Markram, Gerstner, & Sjöström, 2011; Song & Abbott, 2000),
a biologically-based, Hebbian reinforcement learning rule. This
particular learning rule is attractive from a hardware perspec-
tive because it exploits the robustness of discrete value (digital)
representations employed in long distance communication while
preserving analog information in the time dimension. In this
paradigm, inputs that contribute to a neuron firing are strength-
ened, while inputs that do not contribute are weakened. Contribu-
tion to firing is determined by the time of an incident (presynaptic)
spike relative to the time of the neuron firing a (postsynaptic)
spike. Indeed, many approaches have adopted STDP, using analog
long-term storage (Bartolozzi & Indiveri, 2007; Bofill-i Petit &Mur-
ray, 2004; Chicca et al., 2003; Indiveri et al., 2004; Indiveri, Chicca,
& Douglas, 2006; Koickal et al., 2009; Schemmel, Grubl, Meier, &
Mueller, 2006) and floating gate (Liu & Mockel, 2008; Ramakrish-
nan, Hasler, & Gordon, 2012) circuits. The recent work by Bamford,
Murray, and Willshaw (2012) provides an excellent overview in
the state-of-the-art for analog hardware implementations. Digital
implementation of the STDP rule has also been developed and re-
ported in the literature (Belhadj et al., 2009; Cassidy, Andreou, &
Georgiou, 2011; Cassidy et al., 2007).

A key characteristics to large-scale learning is the scalability
of the learning circuit. The size and complexity of a single
synaptic learning circuit is multiplied by the number of learning
synapses in the system. In a system with 103–106 neurons and
2–3 orders of magnitude more synapses, the silicon area required
to implement learning can be significant. We show that two key
innovations enable scalable learning circuits: multiplexing of the
learning circuit (Cassidy et al., 2007) and low complexity of the
learning circuit (Cassidy, Andreou et al., 2011). Naturally, the best
improvement in size and complexity over baseline performance is
obtained by using both techniques together, as shown here.

5.1. The STDP learning rule

The STDP learning rule is an unsupervisedmethod that updates
synaptic weights based on the time of a presynaptic input spike
relative to the time that an output spike event is generated.
The concept is that synapses that contribute to the generation
of an output spike event should be strengthened, while non-
contributing synapses (i.e., those whose input spikes occur after
the output spike is generated) should be weakened. The STDP
modification function (Fig. 10), shows the change in synaptic
weight based on the relative arrival time of a presynaptic input
spike on a particular synapse. The output spike is generated at time
zero in the plot. If a presynaptic spike arrives just before an output
spike is generated, then theweight is increased by the amount1w.
If a presynaptic spike arrives just after an output spike is generated,
then the weight is decreased.

5.2. Multiplexed learning circuits

The functional block diagram of a multiplexed implementation
of digital STDP is shown in Fig. 11. In this approach, the presynaptic
Fig. 10. General STDP modification function.

Fig. 11. Block diagram: baseline digital STDP.

spike times are stored in a circular buffer along with the synaptic
index. When the neuron generates a postsynaptic spike, the time
of the postsynaptic spike is compared with the stored presynaptic
spike times. The time difference is used to address the look-
up table (LUT) storing the STDP modification function (Fig. 10).
The LUT outputs 1w, the value to modify the synaptic weight.
A ‘read–modify–write’ block receives the 1w and modifies the
appropriate synaptic weight based on the index stored in the
circular buffer.

5.3. Low-complexity learning circuits

A low-complexity digital implementation of the STDP learning
rule begins with the observation that weight update functions
can be built from the convolution of digital signals. Fig. 12 shows
the simplest case, a convolution of a rectangle function with a
single pulse (the synchronous digital equivalent to an impulse
function). By combining the output of multiple rectangle-impulse
convolutions, the STDP function can take on many shapes of
varying amplitude, width, and curvature, as shown for example
in Fig. 14. The convolution of rectangle functions to create a
triangular STDP function is shown in Fig. 16. In this case, the
convolution of two rectangle functions creates a pyramid shape.
The pyramid must be bisected in the center in order to create
the negative weight update. This bisection is accomplished by
selecting between the increment and decrement convolutions,
depending on whether the presynaptic spike occurs prior to or
following the postsynaptic spike.

The STDP learning rule updates synaptic weights based on
the relative spike timing of presynaptic and postsynaptic spikes.
Implementing this learning rule in silicon requires measurement
of relative spike timing and a feedback path to modify the synaptic
weights.

Ourminimum complexity implementation encodes this update
function using combinational digital logic. Fig. 13 gives an



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 15
Fig. 12. Timing diagram: STDP modification function—I.

Fig. 13. Block diagram: minimum complexity digital STDP, encoding—I.

Fig. 14. Timing diagram: STDP modification function—II.

overview of a complete neuron including synapses and learning.
In this implementation, synaptic weights are stored using a signed
binary up/down counter capable of representing both excitatory
and inhibitory synapses. (The learning circuit can also be usedwith
more traditional RAM-based synapses by substituting a RAM with
the synapticweights and a read–modify–write operation instead of
the up/down counter.) When a presynaptic spike arrives, the value
of the synaptic weight is sent to the digital neuron. In addition,
the presynaptic spike is also sent to a shift register in the STDP
encoding block. The neuron integrates the synaptic input, and if
it exceeds its firing threshold, it emits a postsynaptic spike. The
Fig. 15. Block diagram: STDP combinational encoding—II.

Fig. 16. Timing diagram: STDP modification function—III.

postsynaptic spike is also sent to the STDP encoding block. Inside
the STDP encoding block, a shift register and two OR gates create
rectangle functions for increment anddecrement. Thepostsynaptic
spike is a single cycle pulse. The rectangle functions and the pulse
are convolved using an AND gate, creating the STDP modification
function shown in Fig. 12.

More complex STDP modifications, as depicted in Figs. 14 and
16, are created by changing the combinational logic and shift reg-
isters in the STDP encoding block. Fig. 15 shows the combinational
encoding block for the STDPmodification function shown in Fig. 14.
This block directly replaces the block in Fig. 13 labeled ‘‘STDP fx
combinational encoding’’. In this case, a second, smaller rectan-
gle function is created by replicating the OR gates that aggregate
the shift register values. We combine the two increment signals to
form a pulse one or two cycles wide (depending onwhether one or
two rectangle convolutions are non-zero). Essentially we are pulse
width encoding the amplitude of the STDPmodification (1w). The
pulse width encoded signal is decoded by the up/down counter
which increments (or decrements) once every clock cycle that the
increment (or decrement) signal is asserted.

The third approach convolves rectangle functions as shown
in Figs. 16 and 17. The rectangle function for the postsynaptic
spike is also created using a shift register-OR gate combination. An
additional function, the I/D sel block, selects between incrementing
and decrementing the synaptic weight based on the binary
decision of whether the presynaptic spike came before or after
the postsynaptic spike. This decision is also encoded using basic
combinational logic. We contrast these low-complexity STDP
implementations with a baseline implementation reported earlier
in Cassidy et al. (2007).

5.4. Extension to multiple synapses

The small, low-complexity STDP circuits presented thus far
have been for a single synapse–neuron pair.With amodest amount



16 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
Fig. 17. Block diagram: STDP combinational encoding—III.

Fig. 18. Multiple synapse extension, first order approach.

Fig. 19. Multiple synapse extension, second and third order approaches.

of additional circuitry, one STDP circuit can be used by all of
the synapses in a neuron, by storing the synapse address of the
presynaptic spike and then sending it out with the increment or
decrement update signals. This first order approach using a single
FIFO is shown in Fig. 18. However, this approach only updates
one synapse for each postsynaptic event. By using two FIFOs, as
shown in Fig. 19, up to two synapses per postsynaptic event can
be updated, one increment and one decrement. By also adding
counters that flush all of the addresses in the FIFOs, this can be
extended to update an arbitrary number of synapses for each
postsynaptic event.

We synthesized each of these STDP approaches, targeting a
Xilinx Spartan XC3S1500 FPGA (Xilinx, 2011). For comparing area
results, each approach uses a time window of 32 clock cycles,
16 prior and 16 following the postsynaptic spike. The resource
utilization for the single synapse circuit, as well as the multiple
synapse extension, are summarized in Table 4. The low-complexity
STDP approaches are over 4× smaller than the baseline approach
in flip-flops and over 20× smaller in terms of LUTs. The multiple
synapse extension using FIFOs uses additional resources, but is still
2.8× smaller in flip-flops and 8.8× smaller in LUTs. Synthesizing
the design for a 130 nm CMOS ASIC technology shows similar area
Table 4
Utilization: Xilinx Spartan XC3S1500.

Approach Slice FF’s 4-LUTs

Baseline 159 371
Comb. encoding I 35 14
Comb. encoding II 37 17
Comb. encoding III 39 16

Comb. encoding I—FIFO, 1 46 24
Comb. encoding I—FIFO, 2 48 26
Comb. encoding I—FIFO, 3 56 42

Fig. 20. Synaptic weight distribution histogram after STDP learning. Baseline
system, 32 synapses. Single trial.

improvement. For additional comparison, the approaches given in
Belhadj et al. (2009) require block RAMs, embeddedmultipliers, as
well as 28× to 480×more LUTs than our largest approach (Comb.
Encoding I—FIFO, 3).

5.5. Experiments and results

We tested the performance of the STDP learning algorithm
by performing a balanced excitation experiment, based on the
experiment run by Song et al. (see Figs. 2a and 2b in Song & Abbott,
2000). In this experiment, 32 synapses from a single neuron start
with a uniform positiveweight distribution. Each synapse is driven
by an independent Poisson spike train inputwith the same average
rate.When STDP is enabled, the synapses converge to a steady state
condition with a bimodal distribution of excitatory and inhibitory
weights.

The baseline implementation replicated the bimodal distribu-
tion as shown in Fig. 20. The results from the combinational en-
coding approaches are shown in Figs. 21–23. Each histogram plot
shows the synaptic weight distribution after STDP learning. The
plots are the aggregate results of eight trials using different stim-
uli for each trial. It is apparent that even the simple scheme (ap-
proach I) is capable of producing the expected bimodal distribution
(Fig. 21). However, it is also apparent that approach III produces
the best3 shaped distribution, which is unsurprising given the best
modification function shape shown in Fig. 16.

The STDP functions for this experiment are not symmetric, as is
depicted in Figs. 12, 14, 16. Instead, thewidths of the increment and
decrement shift registers (rectangle functions in the convolution)
are given in Table 5. These parameters were used to obtain the
results shown for this experiment.

Finally, we use the STDP learning rule implementation tomodel
the effects of ocular dominance during cortical column formation
in the visual cortex. This experiment reproduces the results of
Kanold and Shatz (2006) while employing silicon spiking neurons,
synapses, and STDP learning implemented in the FPGA. Fig. 24

3 ‘‘Best’’ refers to the distribution closest to Fig. 2b in Song and Abbott (2000), the
experiment that we are replicating.



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 17
Fig. 21. Synapticweight distribution histogramafter STDP learning. Combinational
encoding I system, 32 synapses.

Fig. 22. Synapticweight distribution histogramafter STDP learning. Combinational
encoding II system, 32 synapses.

Fig. 23. Synapticweight distribution histogramafter STDP learning. Combinational
encoding III system, 32 synapses.

Table 5
Balanced excitation experiment parameters.

Approach Dec. width Inc. width

Comb. encoding I 16 3
Comb. encoding II-L1 16 4
Comb. encoding II-L2 8 0
Comb. encoding III 16 8

depicts the cortical column formation scenario. There are two
neurons, a layer 4 neuron N0 and a subplate neuron N1. There
are two thalamic inputs th0 and th1, one originating from each
eye. These inputs connect to the subplate neuron as well as the
layer 4 neuron. In addition to the subplate neuron connection, the
layer 4 neuron also receives spontaneous input. It is hypothesized
that the subplate neuron plays an important role during cortical
Fig. 24. Ocular dominance experiment: cortical column.

Fig. 25. Cortical column case 3.

column growth. Specifically, there are four cases for different input
conditions:

1. No subplate, th0 > th1: thalamic inputs (th0, th1) die away.
2. No subplate, th0= th1: thalamic inputs (th0, th1) die away.
3. Subplate, th0 > th1: th0 strengthened, th1 and subplate die

away.
4. Subplate,th0=th1:th0 orth1 strengthened,th1 orth0 and

subplate die away.

Given a proper single set of system parameters (STDP τ , spike fire
thresholds, leak current, and relative refractory period), all four
cases can be met depending on the particular input conditions
present. For example, results for case 3 are shown in Fig. 25. In
this case, the input from th0 is stronger than th1, resulting in a
strengthening of the L4-0 synaptic weight and a weakening of the
L4-1 synaptic weight. As the L4-0 and L4-1 synapses differentiate,
the subplate neuron synapse becomes less important and goes to
zero. Results for the other three cases are similar.

6. Neural architecture optimization

Nowgiven thepreceding representations and implementations,
we return to Marr’s level of computational theory. Given the phys-
ical constraints of delay, energy, and area, how can we maximize
the performance of these parallel computational architectures?
In this section, we perform a constrained optimization in order
to find optimal architectural parameters. Our goal is to find the
optimal number of physical neurons (processors), as well as the
allocation of processor and memory resources (expressed in units
of area) given a fixed total area on the die and the finite communi-
cation bandwidths. Our analysis follows the approach we outlined
in earlier work for traditional chip-multiprocessors (Cassidy & An-
dreou, 2009, 2012). In the present work, processors are the neuron
engines and memory is the internal RAM (state cache and input
aligner cache).Without loss of generality, throughout thisworkwe
employ the LIF neural model.



18 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
Fig. 26. Frame length FL vs. neuron engines N .

6.1. Physical constraints

Using the architecture outlined in Fig. 2,we begin the discussion
of physical constraints, examining the tradeoffs between area and
delay.

6.1.1. Physical vs. multiplexed neurons
The total number of neurons in the system (Q ) is the product

of the number of parallel physical neuron engines (N) and the
frame length (FL) or number of neurons multiplexed onto a single
physical neuron engine,

Q = N · FL. (10)

Thus, for a fixed number of total neurons Q , there are many
combinations ofN and FL thatwill result in the desired total neuron
count. This tradeoff is shown in Fig. 26. In the neural architecture
presentedhere, there are two types of internal RAM, the state cache
and the input aligner cache. The state RAM size is:

STATE_RAM (Bytes) = S · FL (11)

where S is the size of one neuron state in Bytes. The input
alignment RAM size is:

IN_ALIGN_RAM (Bytes) = 2W · FL (12)

whereW is the size of one synaptic weight in Bytes and the factor
of two accounts for the dual ping-pong banks of the input aligner.
The total internal RAM is:

INT_RAM (Bytes) = N · FL(S + 2W ). (13)

Thus we will have a constant total internal RAM if N · FL is held
constant. For example, increasing the number of neuron engines
N by two while decreasing the frame length FL by two, keeps
the total number of neurons Q and total internal RAM constant.
On the other hand, there is a distinct tradeoff between N and
FL while holding Q constant. Larger values of N (and smaller FL)
results in more parallel computational engines, which increases
performance (decreases computational delay). However, larger
values of FL (and smaller N) take up less area since the logic area
(not RAM) is proportional to N and independent of FL. These area
relationships will be revisited in Section 6.2.

6.1.2. Real-time speedup
Biological neural firing rates range from zero Hz to a few

hundred Hz. A computational rate of 1 kHz is sufficient to capture
the internal neural dynamics between firing events. In contrast,
clock rates of standard digital FPGAs and standard cells ASICs are a
few hundredMHz. In this work, we use a 200MHz clock in a Xilinx
Virtex 5 FPGA. The first-order speedup over real-time is:

xRT =
CLK
NCR
=

200 MHz
1 kHz

(14)

where NCR is the neural computation rate. NCR is the inverse
of the neural simulation timestep (i.e. for a 1 ms simulation
timestep, NCR = 1 kHz). By multiplexing neural state on physical
neurons, we tradeoff speedup over real-time for system area.
In the multiplexing case, the speedup over real-time is (using a
multiplexed frame length of FL = 1024):

xRT =

CLK
FL

 
1

NCR


=


200 MHz
1024

 
1

1 kHz


. (15)

Thus, themaximum frame length FL in order to operate at or above
real-time is 200,000 given a neural computation rate NCR of 1 kHz.

6.1.3. External RAM sizing
The size of the synapse RAM is:

SYNP_RAM (Bytes) = W · P · Q (16)

where P number of synapses per neurons and W is the synaptic
weight size defined above. This external RAM is the dominant
factor in determining the total number of synapses in the system,
as well as the number of synapses per neuron. The size of the re-
mapper RAM is a function of fanout FO (destinations per neuron):

REMAP_RAM (Bytes) =
1
8
log2(PQ ) · FO · Q . (17)

Two factors determine the maximum fanout supported by the
system. The first is the size of this external RAM, which determines
the maximum number of destinations that can be stored. The
second is the communication bandwidth which limits the number
of destination events that can be replicated before saturating the
system.

In the discussion above,we have assumed that both the synapse
RAM and the re-mapper RAM assume a uniform number of
synapses or destinations per neuron. This restriction can be re-
moved with the addition of a second lookup stage. This additional
lookup would return a pointer into synapse or re-mapper memory
aswell as a value specifying the number of locations to read beyond
the pointer. This would allow an arbitrary number of synapses or
destinations to be used on a per-neuron basis. The cost is the area
of a second bank of RAM (of size proportional to Q ) as well as the
delay cost of the second table lookup.

6.1.4. Resource allocation analysis
We account for the resources in the FPGA by using the effective

area of each resource. Modern integrated circuits, including FPGAs,
are limited by circuits and wiring that exist in a two dimensional
surface, the area of the die. Hence it is sensible to use the area as
the basic constraint for optimization process.

We begin our analysis by examining the area breakdown of the
system. The area of a neuron is:

Anrn = ARAM + Alogic. (18)

The logic area per neuron is a constant Alogic, while the RAM area is
ARAM = FL(S + 2W ), from (13). Using Amem = (S + 2W ), the area
of the neural array is:

Aarray = NAnrn = N(ARAM + Alogic)

= N(Amem · FL+ Alogic) (19)

where N is the number of physical neuron engines.
In the array, the input multiplexor scales proportional to N ,

while the output multiplexor is implemented as a binary tree.



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 19
There are log2(N) levels in a binary tree, and a total of N−1 nodes.
Thus, since both scale proportionally to N , they are incorporated
into the Alogic term of the neuron engine.

The total available area on the silicon die Atot is:

Atot = Afix + Aarray

= Afix + N(Amem · FL+ Alogic) (20)

where Afix is the fixed area dedicated to support functions (PLLs,
debug circuitry, JTAG, control registers, etc.).

We need a common unit of area in order to perform operations
on both Amem and Alogic. We use memory byte equivalent units. For
logic, this is the size (in Bytes) of an SRAM that occupies the same
silicon area as the given block of logic. For memory this is simply
the size of the RAM. For ASICs, this conversion is accomplished by
determining the average mm2 area of both SRAM and logic gates
for a particular process. Then logic gates can be converted directly
into SRAM Bytes, dropping the mm2 in the process. In FPGAs, we
accomplish this conversion by determining the area ratio between
block RAMs and Configurable Logic Blocks (CLBs) or logic slices. For
a Xilinx Spartan III FPGA, we estimate an 18 kB SRAM occupies the
same area as 32 logic slices. Thus we use a conversion of 64 B per
slice, subdivided as 32 B per slice LUT and 32 B per slice register.

In our first case, we consider the case where we are constrained
not only by the fixed total silicon area, but also by requiring that the
total number of neurons is held constant. The total area constraint
is given in (20) and the total neuron constraint is given in (10)
whenQ is equal to a constant. In this case, the two constraints only
intersect at a single point. Combining (20) and (10): we obtain:

Atot =
Q
FL

(AmemFL+ Alogic)+ Afix (21)

FL =
QAlogic

Atot − Afix − AmemQ
. (22)

Given values of Q , Atot, Afix, Alogic, and Amem, we can directly
determine the value of FL that satisfies both constraints. And the
value of N at that point is given by (10).

6.2. Simplified cost function for symmetric multiprocessing

Here we apply this objective function to our symmetric array of
parallel neural processing engines. The asymmetric cost function
given by Eq. (1) discussed in Section 3.1 simplifies for symmetric
architectures (Cassidy & Andreou, 2012) to:

JED =


K−1
j=0

Fj
Nj

M−1
i=0

GijDij



×


K−1
j=0

Fj
Nj


h∈{A,I}

Njh

M−1
i=0

GijhEijh

γ

(23)

where Fj is the fraction of the algorithm that has parallelism of
Nj. Each fraction Fj is divided into M cost components of the
architecture.Gij is the fraction of Fj that has the ijth cost component
of Dij or Eij. The ijth delay is Dij and the ijth energy cost is Eijh for
the jth fraction of the algorithm and the active or idle processors,
h ∈ {A, I}. The weighting parameter γ scales the relative influence
of delay and energy on the cost of the architecture. Since Fj is
a fraction,

K−1
j=0 Fj must equal 1 and since Gij is also a fraction,M−1

i=0 Gij must equal 1.
Analysis of the symmetric parallel neural architecture proceeds

as follows. Optimizing for delay (and neglecting energy, γ = 0),
we have simply:

JD =
1
N

(G0D0 + G1D1) (24)
whereN is the number of neuron engines,G0 is the average fraction
of time the neuron does not spike, D0 is the time to compute one
frame of the neural state for the whole system (Q neurons), G1 is
the average fraction of time the neuron spikes and D1 is the time
to compute neural state plus the communication delay. Note that
the ‘‘algorithm’’ is perfectly parallelizable. That is to say that the
computation of neural state and firing can be distributed across the
parallel neural array without serialization. Thus there is only one
level of parallelism (K = 1) and F0 = 1.

The output of the neural array is multiplexed onto a shared AER
bus. If more than one event is generated in the array during the
same clock cycle, one of the events will have to wait in a buffer for
an open bus cycle. This contention for the shared communications
resource can be modeled using queueing theory. Here we use an
M/M/1 queue model, where the server rate µ is a fixed constant,
based on the clock frequency of the bus arbiter. The arrival rate
λ is a function of the average neuron firing (communication) rate
and the number of parallel neuron engines: λ = G1N . Using these
parameters, the expected communication contention delay for an
M/M/1 queue is:

t̄ =
1

µ− λ
=

1
µ− G1N

. (25)

Given an average neural firing rate of 100 Hz = 1/100 s =
0.01 s, a system clock rate of 200 MHz, and real-time operation,
the queueing parameters are: µ = 200 MHz and λ = N100 Hz.
The computation and communication fractions are estimated as
follows: g0 = 200 M, g1 = 100, gtot = g0 + g1 = 200,000,100,
and thus: G0 =

g0
gtot

and G1 =
g1
gtot

. Note that if we operate at
a timescale faster than real-time, then µ = 200 MHz/xRT and
g0 = 200 M/xRT .

We solve our constrained optimization problem using the
method of Lagrange multipliers. The Lagrangian is formed by
combining the cost function and the area constraint:

L(N, FL, Λ) =
1
N

(G0D0 + G1D1)

+Λ

N(AmemFL+ Alogic)+ Afix − Atot


. (26)

Substituting in, using D0 = Q and D1 = Q + α + t̄:

L = G0FL+ G1


FL+

α

N
+

1
N(µ− G1N)


+Λ


N(AmemFL+ Alogic)+ Afix − Atot


. (27)

Differentiating the Lagrangian with respect to the three variables
(N, FL, Λ):

∂L
∂N
= G1


−1

N2(µ− G1N)
+

G1

N(µ− G1N)−2


+
−G1α

N2
+Λ


AmemFL+ Alogic


= 0 (28)

∂L
∂FL
= (G0 + G1)+Λ (NAmem) = 0 (29)

∂L
∂Λ
=


N(AmemFL+ Alogic)+ Afix − Atot


. (30)

Given these three equations and three unknowns, we can solve
for the optimal architecture using standard numerical methods.
We can also view the constrained cost function graphically. The
cost function JD, constrained by (20), is plotted in Fig. 27. (Note
the logarithmic scale on both axes.) Since the constrained cost
function is monotonically decreasing, the optimum architecture
(minimum JD) occurs with amaximum number of parallel physical
neuron engines (maximum N given the area constraint) and no
multiplexing (frame length FL = 1).



20 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
Fig. 27. Cost function JD in units of cycles and total number of neurons Q versus
number of physical neuron engines.

From this figure, we can see four different interesting regimes.
The first one is when minimizing the cost of the system in terms
of delay JD. In this regime, we maximize parallelism, filling the
area with physical neurons and not using any multiplexing, thus
FL = 1. This architecture is entirely composed of logic and no
state RAM. A second interesting regime occurs when maximizing
the total number of neurons in the system Q , then we build a
system with one physical neuron N = 1 and maximum FL. This
results in an architecture overwhelmingly composed of RAM. This
is intuitive since the marginal increase in area for a multiplexed
neuron is 2 B, while the marginal increase in area for a physical
neuron is 10 kB. A third case is to maximize performance, while
still meeting a specified total number of neuronsQ . In this case, we
find the desired value ofQ on the vertical axis, find the intersection
with the Q curve (black dashed), and then find the corresponding
value of N at that point. Finally, if we wish to find a ‘‘sweet spot’’,
balancing the total neuron density and the performance, we could
choose the architecture at the knee of the curve. In Fig. 27, this
corresponds to approximately 256 physical neurons, a delay cost
of 8 thousand, and 2 million total neurons.

In the cost function example curve in Fig. 27, the minimum oc-
curs with the maximum number of parallel neuron engines and
FL = 1. The performance is bound by the limit that FL cannot
go below 1. Communication constraints imposes another possi-
ble limit to the number of parallel engines that could be imple-
mented. As the number of parallel engines increases, the commu-
nication traffic on the shared AER bus increases. If the amount of
traffic exceeds the available bandwidth, the system breaks down.
As the amount of traffic approaches this limit, the communica-
tion delay increases. By varying the neural computation rate (NCR)
while holding the average neural firing rate constant, we alter the
amount of traffic per simulation timestep, effectively varying the
communication traffic generated in the system. Note that we in-
crease NCR at the expense of decreasing xRT, according to Eq. (14).
As we decrease the NCR, increasing the effective traffic rate, the
system performance will become communication limited. This is
shown in Fig. 28. For three values of NCR, we see the effect on the
system performance in terms of delay cost JD. For smaller values of
NCR, the performance hits an asymptote, and the optimal architec-
ture is prior to the asymptote.

This architectural exploration assumes an ASIC or custom
VLSI design substrate. However to test our architecture and our
analysis, we used FPGAs as a surrogate design platform. FPGAs
are advantageous for rapid prototyping and reprogrammability,
however, they have fixed resources and organization (memory
sizes and ports, interconnect overhead, etc.). This places limits
on the full range of architectures that can be implemented as
Fig. 28. Communication limited cost function JD in units of cycles versus number
of physical neural engines. (NCR = neural computation rate.)

Table 6
Area implementation results: Xilinx V5SX240.

Q (k) N FL REG (%) LUT (%) UsedRAM(%) UsedBRAMs (%)

512 8 64 k 1.3 0.8 49.6 49.6
512 16 32 k 2.6 1.5 49.6 49.6
512 32 16 k 4.9 2.9 49.6 49.6
512 64 8 k 9.4 5.5 49.6 49.6
512 128 4 k 17.8 10.5 49.6 50.2
256 8 32 k 1.3 0.8 24.8 24.8
256 16 16 k 2.4 1.4 24.8 24.8
256 32 8 k 4.7 2.7 24.8 24.8
256 64 4 k 8.8 5.2 24.8 26.0
256 128 2 k 16.6 9.9 24.8 49.2
128 8 16 k 1.2 0.7 12.4 12.4
128 16 8 k 2.3 1.4 12.4 12.4
128 32 4 k 4.4 2.6 12.4 12.6
128 64 2 k 8.3 4.9 12.4 25.0
128 128 1 k 15.5 9.4 12.4 46.3
128 256 512 32.2 49.2 12.4 34.3
128 512 256 59.6 67.7 12.4 56.6

compared to an ASIC. The next section presents our results using
FPGAs, including discussion on limitations arising from the FPGA
organization.

6.3. Implementation results

We implemented our neural array architecture, targeting Xil-
inx FPGAs in order to build a working system as well as to verify
the analytical model. By using parameterized VHDL, we varied the
architectural parameters and implemented different array config-
urations, thus exploring the design space. We simultaneously var-
ied the number of physical neurons N and the multiplexed frame
length FL by factors of 2, holding the total number of neurons Q
constant. We repeated this process for four different values of Q :
128 thousand, 256 thousand, 512 thousand, 1million. For the three
smaller values of Q , we targeted a Xilinx Virtex 5 SX240 FPGA,
while for the onemillion neuron case, we targeted a Xilinx Virtex 6
SX475 FPGA. The area implementation results for the V5SX240 are
shown in Table 6 while the results for the V6SX475 are shown in
Table 7.

We canmake several interesting observations based on the data
in these tables. First we see that the overall utilization of the FPGA
resources is rather low. Block RAM utilization is approximately
50% for 512 thousand neurons and even lower in all of the other
cases. Logic utilization ranges from less than a percent (N = 8) to
approximately 10% for N = 128. This highlights the high overhead
of using FPGAswith fixed resources. A blank substratewould allow
a much higher utilization of the available silicon. Second, we see



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 21
Fig. 29. Area vs. neuron engines.
Table 7
Area implementation results: Xilinx V6SX475.

Q (k) N FL (k) REG (%) LUT (%) UsedRAM(%) UsedBRAMs (%)

1024 16 64 0.7 1.1 36.1 36.1
1024 32 32 1.3 2.1 36.1 36.1
1024 64 16 2.4 3.9 36.1 36.1
1024 128 8 4.5 7.4 36.1 36.1
1024 256 4 8.6 14.3 36.1 36.1

that the architecture is dominated by RAM, as compared to logic.
With fixed FPGA resources, the RAM is the limiting resource. Third,
note that in several cases, the RAM is actually limited by the
number of RAM ports, and hence number of BRAMs and not the
actual amount of RAM actually used. With a constant Q , when N
is varied, FL is varied by an equivalent amount in the opposite
direction, thus the total RAM should remain constant, as given
by (13). This holds true for 512 and 1024 thousand neurons (see
the ‘‘BRAM blks’’ column). However, for 128 and 256 thousand
neurons, the number of used block RAMs begins to increase even
though the used RAMdoes not. This is to accommodate the number
of ports needed by the architecture (# BRAMs ≈ RAM ports/2).
Block RAMs come in a fixed size: 4 kB, and have two ports. Finally,
notice the cases of Q = 128 thousand and N = 256, 512. These
two design points deviate from the trends of linearly increasing
LUTs and BRAMs increasing by the number of required ports. This
deviation is due to a switch from storing internal state using block
RAMs to distributed RAM.

6.4. Area model validation

Plotting the area data reveals a strong correlation between
empirical results and our analytical model. According to (19) in our
model, the array area is a linear function. Holding the total number
of neurons constant Q = N · FL, the area allocated to internal RAM
stays constant, while the area for the neural engines scales linearly
with N . The empirical and analytical results are shown in Fig. 29.
The solid circles are empirical data points, while the lines are the
first order analyticalmodel, using Amem = 2 and Alogic = 10 kB. The
analytical area model parameters and the minimum squared error
fit lines for the empirical data points are summarized in Table 8.
While the empirical data is very close to our first-order analytical
model, we can see that the slope of the MSE lines change for the
different values of Q , thus Alogic slightly varies as a function of FL.
In addition, the fit lines have a small offset (approximately 32 kB)
above the first-order model. Back annotating the model with the
more detailed model parameters would improve the analytical
predictions even more.
Table 8
Summary of parameters for area model and MSE fit line.

Model MSE Model MSE Model MSE
512 k 512 k 256 k 256 k 128 k 128 k

Slope 10 10.1 10 9.53 10 8.93
Offset 1024 1060 512 544 256 287

Using our model, we also plotted the dual constraints, constant
total neurons (10) and constant total area (20), shown in Fig. 30.
As noted earlier, due to the rigid FPGA organization, we were
only able to use a fraction of the total FPGA area (generally less
than 50%). Thus, assuming a fraction of 35% of the total area, the
maximum number of neural engines predicted by the analytical
model is no more than 128 (if constrained to be a power of 2). This
analytical predictionmatches the empirical results given in Table 6,
where architectures with N > 128 failed to map for Q = 512
and 256 thousand. In the case of Q = 128 thousand, the FPGA
utilization greatly increases due to the jump from using block RAM
to distributed RAM. Thus N = 256 and N = 512 are able to map.

6.5. Cost model validation

We also experimentally verified the frame time (hence
communication delay) of the neural array using a cycle–accurate
simulator (ModelSim). The results are shown in Fig. 31 together
with the delay cost of the architecture, as predicted by the
analytical model (27). With a high neural computation rate (NCR),
the communication overhead is negligible. Thus the frame time
is the dominant term in the delay cost of the architecture. Once
again the analyticalmodel and the experimental resultsmatch very
closely.

7. Discussion

In this paper we have revisited Marr’s levels of representation,
emphasized the need for layered levels, the physical and the
abstract, not in a hierarchy but rather in a recurrent relationship.
Computational theory sits on top and provides the foundations
for information processing architectures in brains and modern
computing systems. Furthermore we provide a concrete design
methodology for architectural exploration and understanding
through ‘‘constraints that deconstrain’’ (Kirschner &Gerhart, 1998)
through the use of a cost function optimization and parametric
models at different levels of description that link software layers
of abstraction to hardware layers, as well as delay and energy
constrained by physical space.

For example, we have demonstrated the architecture of
functional components, i.e. dynamical neurons from the simple



22 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
Fig. 30. Constant total neuron Q and constant total area Atot curves.
Fig. 31. JD cost model validation: experiment vs. theory.

LIF to the more complex Izhikevich model. While the LIF neural
model has been dominant in neuromorphic systems, we have
demonstrated that neurons with more complex behaviors can
be added to neuromorphic systems with relative ease. This
functionality has been enabled by shifting from a predominantly
analog silicon neuron paradigm, to a digital silicon neuron
paradigm abstracting functionality. The digital processing level
of implementation is also advantageous for its stability and high
precision properties. Third, in terms of computational theory, the
architecture optimization work contributes a methodology for
analytical optimization of parallel architectures subject to the
physical constraints of delay, energy, and area. Our approach goes
beyond what was recently discussed in a paper on architecture,
constraints, and behavior by Doyle and Csete (2011), where the
architecture of the brain is discussed in terms of the physical
layers in clothing juxtaposed to layers of abstraction in biological
systems. The end result of our work at each of these layers of
abstraction is the advent of nano-CMOS digital neuromorphic
systems which incorporate both computation and learning, that
can scale into the range of millions of neurons per chip.

Our goal was to explore the design of canonical structures, and
hencewehave begun at the level of spiking neurons and proceeded
to design a neural architecture that is capable of supporting
multiple functions. In the work presented here, we have focused
on ‘‘generic’’ design for a neural architecturewithout consideration
of the problem at hand. Partly our motivation is a belief that
the brain is comprised of canonical computational structures
that have evolved to solve problems ranging from early sensory
processing to high-level cognition. The cortical column/STDP
experiment in Section 5.5 involves multiple timescales and layers
of representation. At the base level is the neural computation
timescale (1 ms time ticks). The learning occurs at a longer/slower
timescale. Then we used simulated annealing to learn the
free parameters of the system (highest/longest timescale.) The
architecture was optimized for the continual processing at the
1 ms timescale. The learning events occur less frequently and are
less optimized in the data flow architecture (a read–modify–write
action on memory to update the synaptic weights.) At the
highest level, the simulated annealing algorithm was run on the
host PC (in software), updating parameters infrequently at the
longest timescale. The recent paper by Douglas and Martin linking
behavior to the architecture of the cortical sheet demonstrates
beautifully the links of information processing and computation
under physical constraints, adding the developmental dimension
in biological tissue (Douglas & Martin, 2012).

From an engineering perspective however, wemay want to op-
timize an architecture for specific tasks such as natural language
processing or the functionality of a specific silicon nervous sys-
tem for robotic applications. To do so, wemust further develop the
‘‘bottom up’’ models in such a way so that they can be parameter-
ized to be simple functions of an application domain, for instance
inference using graphical models. This optimization approach was
recently demonstrated for automatic speech recognition (Cassidy,
Yu, Zhou, & Andreou, 2011) and can be generalized for asymmetric
spiking neural multiprocessors, defining an exciting direction for
future work. Rapid design time, low cost, flexibility, digital preci-
sion, and stability are characteristics that favor digital implemen-
tation as a promising alternative to analog VLSI based approaches
for designing neuromorphic systems. High computational power
as well as low size, weight, and power (SWAP) are advantages
that digital architectures offer over software based neuromorphic
systems.

Some applications will favor minimizing power dissipation as
opposed to performance. This is achieved by trading off faster
than real-time performance for lower clock frequency and a lower
supply voltage. In terms of the cost function in Eq. (1), this will be
equivalent to setting the weighting parameter γ to a value greater
than one. The latterwill be applicable to a full customCMOS design
with digital circuits operating in subthreshold (Martin, Pouliquen,
Andreou, & Fraeman, 1996; Vittoz, 2005) at a fewMHz (Imamet al.,
2012; Merolla et al., 2011) or even in the hundreds of kHz at ultra
low voltages (Lotze &Manoli, 2012). According to the formula P =
CV 2f , this will lead to significant power savings. Preliminary work
in this direction and analysis of communication architectures in
this application regime, suggests that a switchedmesh architecture
may be advantageous over the AER scheme used in this paper
(Cassidy, Murray, Andreou, & Georgiou, 2011). It should be pointed



A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 23
out that switched capacitor and charged based analog circuits
(Bamford & Giulioni, 2010; Noack, Mayr, Partzsch, Schultz, &
Schuffny, 2012; Stanacevic & Cauwenberghs, 2005) could scale in
deep sub-micron CMOS and hence it is possible that one would see
hybrid architectures involving analog state holding elements, in
synapses and even sophisticated neuron circuits (Folowosele et al.,
2009).

Finally, our architecture does not appear to be a truly single-
chip solution because of the two banks of SRAM external to
the FPGA. However, these external SRAM banks can be readily
integrated into a single chip solution using a 3D VLSI process,
such as provided by Tezzaron (Tezzaron, 2011). In this approach,
three VLSI tiers map to one tier for the parallel computation layer,
including state memory and logic, and two tiers of SRAM for the
synapse weights and re-mapper RAM. It is interesting to note that
in the early days of neural networks, there were substantial efforts
to develop all digital bio-inspired systems (Hammerstrom, 1995,
1998; Hammerstrom & Lulich, 1996; Wawrzynek et al., 1996;
Wawrzynek, Asanovic, & Morgan, 1993). While these efforts were
partially successful and visionary at that time, they were limited
by technology and namely the inability to integrate substantial
amounts of memory on the die. It would be interesting to see if
the emerging 3D-CMOS technology (Tezzaron, 2011) or the IBM
embedded DRAM technologies (Iyer et al., 2005) will help alleviate
this problem.

Also promising directions in the nano-CMOS era involve ex-
ploiting more unconventional memory technologies such as nano
wires and switches (Avizienis et al., 2012), memristors (Strukov,
Snider, Stewart, & Williams, 2008), nano and CMOL architectures
(Likharev, 2008) and system concepts that rely on these tech-
nologies (Gao & Hammerstrom, 2007; Gao, Zaveri, & Hammer-
strom, 2008; Hammerstrom & Zaveri, 2009). The early pulse cou-
pled mixed system designs that exploited timing to represent
analog state (Murray, Del Corso, & Tarassenko, 1991) may also
see a re-emergence in the context of stochastic computation and
probabilistic event-based systems. It also seems increasingly likely
that process scalable charged-based (Anthony, Ma Kohler, Kurtze,
Kushne, & Sollner, 2008) and switched-capacitor circuits (Bam-
ford, Hogri et al., 2012; Folowosele et al., 2009; Georgiou, Andreou,
& Pouliquen, 2006; Noack et al., 2012) may play a role yielding
true mixed-signal architectures that exploit the best of continuous
value and discrete value representations.

8. Conclusions

We conclude this paper with a summary of ideas and results
that we believe are relevant to the design of future neuromorphic
systems aimed at commodity information processing at the scale.

First, we demonstrated the advantages of the digital neuron ab-
straction instead of the more biophysically realistic analog neu-
rons. Second, to emulate the massive parallelism and high neuron
density found in biology, wemultiplex neural state computation in
order to take advantage of high clock frequencies and dense SRAMs
found in nanometer silicon technology. Third, we have presented
an energy–delay cost function that is the first step towards devel-
opmental and evolutionary design principles that we believe have
shaped biological neural systems. A highly quantitative formula-
tion, the cost function also presents a qualitative view of parallel
processing subject to physical constraints in layered information
processing architectures. Delay cost is minimized by maximizing
parallelism in the system. Under a fixed physical size constraint—
we have employed area in this paper—the core area (processor and
local memory) must beminimized in order to increase parallelism,
balanced by the simultaneous goal of maximizing processing den-
sity throughmultiplexing. Both energy and delay costs are reduced
by eliminating the serial fraction of the algorithm, as well as by
minimizing costly off-chip accesses by keeping state local to each
neural engine/processing unit.

Finally, the dawn of neuromorphic systems engineering at the
scale has arrived. We have presented a design methodology for
large-scale digital neuromorphic architectures for the nano-CMOS
era. Our approach to the design of spiking neurons and STDP
learning circuits relies on layered parallel computational struc-
tures where neurons are abstracted as arithmetic logic units and
communication processors. We demonstrated the validity of the
design methodology through the implementation of cortical de-
velopment using spiking neurons and STDP learning and neural
architecture optimization in state-of-the-art Field Programmable
Gate Arrays (FPGAs). The implementation of neural arrays, spiking
neurons as well as STDP learning rules have been prototyped in
FPGAs. The latter are an ideal platform for investigating digital sil-
icon neuron architectures, due to the inherent flexibility and high-
level design methodology and offer a stepping stone towards full
large-scale ASIC designs. With this work, we have taken a signif-
icant step towards realizing the goals of a new class of artificial,
high-performance, energy-efficient, parallel computational archi-
tectures inspired by the brain.

Acknowledgments

This work was supported by the EU ICT Grant (ICT-231168-
SCANDLE) ‘‘acoustic SCene ANalysis for Detecting Living Entities’’
and by ONR MURI (N000141010278) ‘‘Figure-Ground Processing,
Saliency and Guided Attention for Analysis of Large Natural
Scenes’’.

References

Amdahl, G. M. (1967). Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings AFIPS spring joint computer
conference (pp. 483–485).

Anderson, C. H., & Eliasmith, C. (2004). Neural engineering: computation, representa-
tion, and dynamics in neurobiological systems. The MIT Press.

Andreou, A. G., & Kalayjian, Z. K. (2002). Polarization imaging: principles and
integrated polarimeters. IEEE Sensors Journal, 2(6), 566–575.

Andreou, A. G., Meitzler, R. C., Strohben, K., & Boahen, K. A. (1995). Analog VLSI
neuromorphic image acquisition and pre-processing systems.Neural Networks,
8(7/8), 1323–1347.

Anthony, M., Kohler, E., Kurtze, J., Kushner, L., & Sollner, G. (2008). A process-
scalable low-power charge-domain 13-bit pipeline ADC. In VLSI Circuits, 2008
IEEE Symposium on(pp. 222–223).

APT-Group. (2011a). SpiNNaker a chip multiprocessor for neural network
simulation. Tech. rep., The University of Manchester. January.

APT-Group. (2011b). SpiNNaker application programming interface. Tech. rep.
Version 0.0, University of Manchester. December.

APT-Group. (2011c). SpiNNaker software specification and design. Tech. rep.
version 0.0, The University of Manchester. December.

Arthur, J. V., & Boahen, K. A. (2010). Silicon–neuron design: a dynamical systems
approach. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(5),
1034–1043.

Arthur, J. V., Merolla, P. A., Akopyan, F., Alvarez, R., Cassidy, A. S., & Chandra, S. et
al. (2012). Building block of a programmable neuromorphic substrate: a digital
neurosynaptic core. In Proceedings of the 2012 international joint conference on
neural networks, IJCNN (pp. 1–8).

Avizienis, A. V., Sillin, H. O., Martin-Olmos, C., Shieh, H. H., Aono,M., Stieg, A. Z., et al.
(2012). Neuromorphic atomic switch networks. PLoS One, 7(8), e42772.

Bamford, S. A., & Giulioni, M. (2010). Intimatemixing of analogue and digital signals
in a field-programmable mixed-signal array with lopsided logic. In Proceedings
of the 2010 IEEE biomedical circuits and systems conference, BioCAS 2010
(pp. 234–237).

Bamford, S. A., Hogri, R., Giovannucci, A., Taub, A. H., Herreros, I., Verschure, P. F.
M. J., et al. (2012). A VLSI field-programmable mixed-signal array to perform
neural signal processing and neural modeling in a prosthetic system. IEEE
Transactions on Neural Systems and Rehabilitation Engineering , 20(4), 455–467.

Bamford, S. A., Murray, A. F., & Willshaw, D. J. (2012). Spike-timing-dependent
plasticity with weight dependence evoked from physical constraints. IEEE
Transactions on Biomedical Circuits and Systems, 6(4), 385–398.

Bartolozzi, C., & Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural
Computation, 19(10), 2581–2603.

Belhadj, B., Tomas, J., & Bornat, Y. (2009). Digital mapping of a realistic spike timing
plasticity model for real-time neural simulations. In Proceedings of the XXIV
conference on design of circuits and integrated systems, DCIS (pp. 1–6).

http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref2
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref3
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref4
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref9
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref11
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref13
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref14
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref15


24 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. The Journal of Neuroscience, 18(24), 10464–10472.

Boahen, K. A. (1996). Retinomorphic vision systems. In Proceedings of the 5th
international conference on microelectronics for neural networks, MicroNeuro
(pp. 2–14).

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips
using address events. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing , 47(5), 416–434.

Boahen, K. A., & Andreou, A. G. (1992). A contrast sensitive silicon retina with
reciprocal synapses. Advances in Neural Information Processing Systems, 3,
764–772.

Boahen, K. A., Pouliquen, P. O., Andreou, A. G., & Jenkins, R. E. (1989). A
heteroassociative memory using current-mode MOS analog VLSI circuits. IEEE
Transactions on Circuits and Systems, 36(5), 747–755.

Bofill-i Petit, A., & Murray, A. F. (2004). Synchrony detection and amplification
by silicon neurons with STDP synapses. IEEE Transactions on Neural Networks,
15(5), 1296–1304.

Bruederle, D., Petrovici, M. A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S., et al.
(2011). A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems. Biological Cybernetics,
104(4–5), 263–296.

Camuñas-Mesa, L. A., Zamarreño-Ramos, C., Linares-Barranco, A., Acosta-Jimenez,
A. J., Serrano-Gotarredona, T., & Linares-Barranco, B. (2012). An event-driven
multi-kernel convolution processor module for event-driven vision sensors.
IEEE Journal of Solid-State Circuits, 47(2), 504–517.

Cardoso, J., Diniz, P., & Weinhardt, M. (2010). Compiling for reconfigurable
computing: a survey. ACM Computing Surveys, 42(4), 13:1–13:64.

Carmona, R., Espejo, S., Dominguez-Castro, R., Rodriguez-Vazquez, A., Roska, T., &
Kozek, T. et al. (1998). A 0.5 µm CMOS CNN analog random access memory
chip for massive image processing. In Proceedings of the 5th IEEE international
workshop on cellular neural networks and their applications, CNAA (pp. 271–276).

Cassidy, A. S., & Andreou, A. G. (2008). Dynamical digital silicon neurons. In
Proceedings of the 2007 IEEE biomedical circuits and systems conference, BioCAS
2007 (pp. 289–292).

Cassidy, A. S., & Andreou, A. G. (2009). Analytical methods for the design and
optimization of chip-multiprocessor architectures. In Proceedings of the 43rd
annual conference on information sciences and systems, CISS (pp. 482–487).

Cassidy, A. S., & Andreou, A. G. (2012). Beyond Amdahl’s law: an objective
function that links multiprocessor performance gains to delay and energy. IEEE
Transactions on Computers, 61(8), 1110–1126.

Cassidy, A. S., Andreou, A. G., & Georgiou, J. (2011). A combinational digital logic
approach to STDP. In Proceedings of the 2011 IEEE international symposium on
circuits and systems, ISCAS (pp. 673–676).

Cassidy, A. S., Denham, S. L., Kanold, P. O., & Andreou, A. G. (2007). FPGA based
silicon spiking neural array. In Proceedings of the 2007 IEEE biomedical circuits
and systems conference, BioCAS 2007 (pp. 75–78).

Cassidy, A. S., Murray, T., Andreou, A. G., & Georgiou, J. (2011). Evaluating on-chip
interconnects for low operating frequency silicon neuron arrays. In Proceedings
of the 2011 IEEE international symposium on circuits and systems, ISCAS
(pp. 2437–2440).

Cassidy, A. S., Yu, K., Zhou, H., & Andreou, A. G. (2011). A high-level analytical
model for application specific CMPdesign exploration. In Proceedings of the 2011
conference on design automation & test in Europe, DATE’11 (pp. 1–6).

Cembrano, G., Rodriguez-Vazquez, A., Galan, R., Jimenez-Garrido, F., Espejo, S., &
Dominguez-Castro, R. (2004). A 1000 FPS at 128 × 128 vision processor with
8-bit digitized I/O. IEEE Journal of Solid-State Circuits, 39(7), 1044–1055.

Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L., et al.
(2003). A VLSI recurrent network of integrate-and-fire neurons connected by
plastic synapseswith long-termmemory. IEEE Transactions on Neural Networks,
14(5), 1297–1307.

Chklovskii, D. B., Mel, B.W., & Svoboda, K. (2004). Cortical rewiring and information
storage. Nature, 431(7010), 782–788.

Choudhary, S., Sloan, S., Fok, S., Neckar, A., Trautmann, E., & Gao, P. et al. (2012).
Silicon neurons that compute. In Proceedings of the 2012 international joint
conference on neural networks, IJCNN (pp. 1–8).

Chua, L. O., & Yang, L. (1988). Cellular neural networks: theory. IEEE Transactions on
Circuits and Systems, 35(10), 1257–1272.

Churchland, P. S., & Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience.
Science, 242(4879), 741–745.

Culurciello, E., Etienne-Cummings, R., & Boahen, K. A. (2003). A biomorphic digital
image sensor. IEEE Journal of Solid-State Circuits, 38(2), 281–294.

Das, A. (2000). Optimizing coverage in the cortex. Nature Neuroscience, 3(8),
750–752.

de Garis, H., Shuo, C., Goertzel, B., & Ruiting, L. (2010). A world survey of artificial
brain projects, Part I: large-scale brain simulations. Neurocomputing , 74(1–3).

Diorio, C., Hasler, P. E., Minch, B. A., & Mead, C. A. (1996). A single-transistor silicon
synapse. IEEE Transactions on Electron Devices, 43(11), 1972–1980.

Diorio, C., Hasler, P. E., Minch, B. A., & Mead, C. A. (1997). A floating-gate MOS
learning array with locally computed weight updates. IEEE Transactions on
Electron Devices, 44(12), 2281–2289.

Dominguez-Castro, R., Espejo, S., Rodriguez-Vazquez, A., Carmona, R., Foldesy, P.,
Zarandy, A., et al. (1997). A 0.8 µm CMOS two-dimensional programmable
mixed-signal focal-plane array processor with on-chip binary imaging and
instructions storage. IEEE Journal of Solid-State Circuits, 32(7), 1013–1026.

Douglas, R. J., & Martin, K. A. C. (2012). Behavioral architecture of the cortical sheet.
Current Biology, 22(24), R1033–R1038.
Doyle, J. C., & Csete, M. (2011). Architecture, constraints, and behavior. Proceedings
of the National Academy of Sciences of the United States of America, 108(Suppl. 3),
15624–15630.

Eliasmith, C., & Stewart, T. C. (2011). Nengo and the neural engineering framework:
connecting cognitive theory to neuroscience. In Proceedings of the 33rd annual
meeting of the cognitive science society (pp. 1–2).

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al. (2012).
A large-scale model of the functioning brain. Science, 338(6111), 1202–1205.

Etienne-Cummings, R., Kalayjian, Z. K., &Donghui, C. (2001). A programmable focal-
plane MIMD image processor chip. IEEE Journal of Solid-State Circuits, 36(1),
64–73.

Fasnacht, D. B., & Indiveri, G. (2011). A PCI based high-fanout AERmapper with 2 GB
RAM look-up table, 0.8 us latency and 66MHz output event-rate. In Proceedings
of the 45th annual conference on information sciences and systems, CISS (pp. 1–6).

Federico, M. D., Mandolesi, P. S., Julian, P., & Andreou, A. G. (2008). Experimental
results of simplicial CNN digital pixel processor. IET Electronics Letters, 44(1),
27–29.

Folowosele, F. O., Harrison, A., Cassidy, A. S., Andreou, A. G., Etienne-Cummings, R., &
Mihalas, S. et al. (2009). A switched capacitor implementation of the generalized
linear integrate-and-fire neuron. In Proceedings of the 2009 IEEE international
symposium on circuits and systems, ISCAS (pp. 2149–2152).

Galluppi, F., Davies, S., Furber, S. B., Stewart, T. C., & Eliasmith, C. (2012). Real
time on-chip implementation of dynamical systems with spiking neurons. In
Proceedings of the 2012 international joint conference on neural networks, IJCNN
(pp. 1–8).

Gao, C., & Hammerstrom, D. W. (2007). Cortical models onto CMOL and CMOS—
architectures and performance/price. IEEE Transactions on Circuits and Systems
I: Regular Papers, 54(11), 2502–2515.

Gao, C., Zaveri, M. S., & Hammerstrom, D. W. (2008). CMOS/CMOL architectures for
spiking cortical column. In Proceedings of the 2008 international joint conference
on neural networks, IJCNN (pp. 2441–2448).

Genov, R., & Cauwenberghs, G. (2001). Charge-mode parallel architecture for
vector–matrix multiplication. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing , 48(10), 930–936.

Georgiou, J., & Andreou, A. G. (2006). High-speed, address-encoding arbiter
architecture. IET Electronics Letters, 42(3), 170–171.

Georgiou, J., & Andreou, A. G. (2007). Address-data event representation
for communication in multichip neuromorphic system architectures. IET
Electronics Letters, 43(14), 767.

Georgiou, J., Andreou, A. G., & Pouliquen, P. O. (2006). A mixed analog/digital
asynchronous processor for cortical computations in 3D SOI-CMOS. In
Proceedings of the 2006 IEEE international symposium on circuits and systems,
ISCAS (pp. 4955–4958).

Giulioni, M., Camilleri, P., Mattia, M., Dante, V., Braun, J., & Del Giudice, P. (2011).
Robust workingmemory in an asynchronously spiking neural network realized
with neuromorphic VLSI. Frontiers in Neuroscience, 5, 149.

Goldberg, D. H., Cauwenberghs, G., & Andreou, A. G. (2001a). Analog VLSI spiking
neural network with address domain probabilistic synapses. In Proceedings
of the 2001 IEEE international symposium on circuits and systems, ISCAS
(pp. 241–244).

Goldberg, D. H., Cauwenberghs, G., & Andreou, A. G. (2001b). Probabilistic synaptic
weighting in a reconfigurable network of VLSI integrate-and-fire neurons.
Neural Networks, 14, 781–793.

Goodman, D. F.M., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience,
3(2), 192–197.

GSI, (2011). GSI technology home. www.gsitechnology.com. February.
Hall, T. S., Twigg, C. M., Gray, J. D., Hasler, P. E., & Anderson, D. V. (2005). Large-

scale field-programmable analog arrays for analog signal processing. IEEE
Transactions on Circuits and Systems I: Regular Papers, 52(11), 2298–2307.

Hammerstrom, D.W. (1995). A digital VLSI architecture for real-world applications.
In An introduction to neural and electronic networks (2nd ed.) (pp. 335–358).
Academic Press.

Hammerstrom, D. W. (1998). Digital VLSI for neural networks. In M. A. Arbib (Ed.),
The handbook of brain theory and neural networks (pp. 304–309). The MIT Press.

Hammerstrom, D. W., & Lulich, D. P. (1996). Image processing using one-
dimensional processor arrays. Proceedings of the IEEE, 84(7), 1005–1018.

Hammerstrom, D. W., & Zaveri, M. S. (2009). Prospects for building cortex-scale
CMOL/CMOS circuits: a design space exploration. In Proceedings of the 27th
Norchip conference, NORCHIP-2009 (pp. 1–8).

Harrison, A., Özgün, R., Lin, J., Andreou, A. G., & Etienne-Cummings, R. (2010). A spike
based 3D imager chip using a mixed mode encoding readout. In Proceedings
of the 2010 IEEE biomedical circuits and systems conference, BioCAS 2010
(pp. 190–193).

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. Journal of
Physiology: London, 117(4), 500–544.

Horiuchi, T. K., & Koch, C. (1999). Analog VLSI-based modeling of the primate
oculomotor system. Neural Computation, 11(1), 243–265.

Hsin, C., Saighi, S., Buhry, L., & Renaud, S. (2010). Real-time simulation of biologically
realistic stochastic neurons in VLSI. IEEE Transactions on Neural Networks, 21(9),
1511–1517.

Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture: functional architecture of
macaque monkey visual cortex. Proceedings of the Royal Society B: Biological
Sciences, 198(1130), 1–59.

Imam, N., Akopyan, F., Arthur, J. V., Merolla, P. A., Manohar, R., &Modha, D. S. (2012).
A digital neurosynaptic core using event-driven QDI circuits. In Proceedings
of the 18th IEEE international symposium on asynchronous circuits and systems,
ASYNC (pp. 25–32).

http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref17
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref19
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref20
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref21
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref22
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref23
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref24
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref25
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref29
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref34
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref35
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref36
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref38
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref39
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref40
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref41
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref42
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref43
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref44
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref45
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref46
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref47
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref49
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref50
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref52
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref55
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref57
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref58
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref59
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref61
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref63
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref64
http://www.gsitechnology.com
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref66
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref67
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref68
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref69
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref72
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref73
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref74
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref75


A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26 25
Indiveri, G., Chicca, E., & Douglas, R. J. (2004). A VLSI reconfigurable network of
integrate-and-fire neurons with spike-based learning synapses. In Proceed-
ings of the 2004 European symposium on artificial neural networks, ESANN
(pp. 405–410).

Indiveri, G., Chicca, E., & Douglas, R. J. (2006). A VLSI array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity. IEEE
Transactions on Neural Networks, 17(1), 211–221.

Iyer, S. S., Barth, J. E., Jr., Parries, P. C., Norum, J. P., Rice, J. P., Logan, L. R., et al. (2005).
Embedded DRAM: technology platform for the Blue Gene/L chip. IBM Journal of
Research and Development , 49(2), 333–350.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on
Neural Networks, 14(6), 1569–1572.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks, 15(5), 1063–1070.

Kanold, P. O., & Shatz, C. (2006). Subplate neurons regulate maturation of cortical
inhibition and outcome of ocular dominance plasticity.Neuron, 51(5), 627–638.

Karakiewicz, R., Genov, R., & Cauwenberghs, G. (2007). 480-GMACS/mW resonant
adiabatic mixed-signal processor array for charge-based pattern recognition.
IEEE Journal of Solid-State Circuits, 42(11), 2573–2584.

Opal-Kelly, (2012). FPGA USB modules. www.opalkelly.com.
Kestur, S., Park, M. S., Sabarad, J., Dantara, D., Narayanan, V., & Chen, Y. et al.

(2012). Emulating mammalian vision on reconfigurable hardware. In 2012
IEEE international symposium on field-programmable custom computingmachines
(pp. 141–148).

Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., & Painkras, E. et al. (2008). SpiNNaker:
mapping neural networks onto a massively-parallel chip multiprocessor. In
Proceedings of the 2008 international joint conference on neural networks, IJCNN
(pp. 2850–2857).

Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy
of Sciences of the United States of America, 95(15), 8420–8427.

Koickal, T. J., Gouveia, L. C., & Hamilton, A. (2009). A programmable spike-
timing based circuit block for reconfigurable neuromorphic computing.
Neurocomputing , 72, 3609–3616.

Kumar, N., Himmelbauer,W., Cauwenberghs, G., & Andreou, A. G. (1998). An analog
VLSI chip with asynchronous interface for auditory feature extraction. IEEE
Transactions onCircuits and Systems II: Analog andDigital Signal Processing , 45(5),
600–606.

La Rosa, M., Caruso, E., Fortuna, L., Frasca, M., Occhipinti, L., & Rivoli, F. (2005).
Neuronal dynamics on FPGA: Izhikevich’s model. In Proceedings of SPIE:
bioengineered and bioinspired systems II (pp. 87–94). SPIE.

Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks.
Science, 301(5641), 1870–1874.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128 × 128 120 dB 15 µs
latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-
State Circuits, 43(2), 566–576.

Likharev, K. K. (2008). CMOL: second life for silicon?Microelectronics Journal, 39(2),
177–183.

Lin, J. H., & Boahen, K. A. (2009). A delay-insensitive address-event link. In 15th IEEE
symposium on asynchronous circuits and systems, ASYNC (pp. 55–62).

Lin, J. H., Pouliquen, P. O., Andreou, A. G., Goldberg, A. C., & Rizk, C. G. (2012).
Flexible readout and integration sensors (FRIS): a bio-inspired, system-on-chip,
event based readout architecture. In Proceedings of SPIE: infrared technology and
applications XXXVIII conference (pp. 8353–1N).

Lin, J. H., Pouliquen, P. O., Goldberg, A. C., Rizk, C. G., & Andreou, A. G. (2011).
A bio-inspired event-driven architecture with pixel-level A/D conversion and
non-uniformity correction. In Proceedings of the 45th annual conference on
information sciences and systems, CISS (pp. 1–6).

Liu, S.-C., & Mockel, R. (2008). Temporally learning floating-gate VLSI synapses. In
Proceedings of the 2008 IEEE international symposium on circuits and systems,
ISCAS (pp. 2154–2157).

Lotze, N., & Manoli, Y. (2012). A 62 mV 0.13 µm CMOS standard-cell-based design
technique using Schmitt-trigger logic. IEEE Journal of Solid-State Circuits, 47(1),
47–60.

Mahowald, M. (1992). VLSI analogs of neuronal visual processing: a synthesis
of form and function. Ph.D. Thesis, Ph.D. Dissertation, California Institute of
Technology.

Mandolesi, P. S., Julian, P., & Andreou, A. G. (2004). A scalable and programmable
simplicial CNN digital pixel processor architecture. IEEE Transactions on Circuits
and Systems I: Regular Papers, 51(5), 988–996.

Mandolesi, P. S., Julian, P., & Andreou, A. G. (2006). A simplicial CNN visual processor
in 3D SOI-CMOS. In Proceedings of the 2006 IEEE international symposium on
circuits and systems, ISCAS (pp. 1311–1314).

Markram, H. (2011). Human brain project. http://www.humanbrainproject.eu/.
Markram, H., Gerstner, W., & Sjöström, P. J. (2011). A history of spike-timing-

dependent plasticity. Frontiers in Synaptic Neuroscience, 3(4), 1–24.
Marr, D. (1982). Vision: a computational investigation into the human representation

and processing of visual information. W.H. Freeman and Company.
Martin, M. N., Pouliquen, P. O., Andreou, A. G., & Fraeman, M. E. (1996). Current-

mode differential logic circuits for low power digital systems. In Proceedings of
the 39th midwest symposium on circuits and systems, MWSCAS (pp. 183–186).

McClelland, J. L., Rumelhardt, D. R., & Group, P. R. (1987). Parallel distributed
processing, psychological and biological models—Vol. 2. The MIT Press.

Mead, C. A. (1989). Analog VLSI and neural systems. Addison-Wesley Publishers.
Mead, C. A. (1990). Neuromorphic electronic systems. Proceedings of the IEEE,

78(10), 1629–1636.
Mead, C. A., & Conway, L. (1979). Introduction to VLSI systems. Addison-Wesley
Publishers.

Merolla, P. A., Arthur, J. V., Akopyan, F., Imam, N.,Manohar, R., &Modha, D. S. (2011).
A digital neurosynaptic core using embedded crossbar memory with 45 pJ per
spike in 45 nm. In 2011 IEEE custom integrated circuits conference, CICC 2011.
(pp. 1–4). IEEE.

Mihalas, S., &Niebur, E. (2009). A generalized linear integrate-and-fire neuralmodel
produces diverse spiking behaviors. Neural Computation, 21(3), 704–718.

Mill, R., Sheik, S., Indiveri, G., & Denham, S. L. (2011). A model for stimulus-specific
adaptation in neuromorphic analog VLSI. IEEE Transactions on Biomedical
Circuits and Systems, 1–8.

Misra, J., & Saha, I. (2010). Artificial neural networks in hardware a survey of two
decades of progress. Neurocomputing , 74(1–3), 239–255.

Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A., Sherbondy, A. J., &
Singh, R. (2011). Cognitive computing. Communications of the ACM , 54(8), 62.

Murray, A. F., Del Corso, D., & Tarassenko, L. (1991). Pulse-stream VLSI neural
networks mixing analog and digital techniques. IEEE Transactions on Neural
Networks, 2(2), 193–204.

Nallatech, (2008). FPGA accelerated computing. www.nallatech.com. December.
Neumann, J. v. (1958). The computer and the brain. Yale University Press.
Noack, M., Mayr, C., Partzsch, J., Schultz, M., & Schuffny, R. (2012). A switched-

capacitor implementation of short-term synaptic dynamics. In Proceedings of
the 19th international conference on mixed design of integrated circuits and
systems, MIXDES 2012. (pp. 214–218). IEEE.

Pardo, F., Dierickx, B., & Scheffer, D. (1998). Space-variant nonorthogonal structure
CMOS image sensor design. IEEE Journal of Solid-State Circuits, 33(6), 842–849.

Pearson, M., Pipe, A., Mitchinson, B., Melhush, G., Gilhespy, I., & Nibouche, M.
(2007). Implementing spiking neural networks for real-time signal-processing
and control applications: a model-validated FPGA approach. IEEE Transactions
on Neural Networks, 18(5), 1472–1487.

Pham, P.-H., Jelaca, D., Farabet, C., Martini, B., LeCun, Y., & Culurciello, E. (2012).
NeuFlow: dataflow vision processing system-on-a-chip. In Proceedings of the
55th midwest symposium on circuits and systems, MWSCAS (pp. 1044–1047).

Posch, C., Matolin, D., & Wohlgenannt, R. (2011). A QVGA 143 dB dynamic range
frame-free PWM image sensor with lossless pixel-level video compression and
time-domain CDS. IEEE Journal of Solid-State Circuits, 46(1), 259–275.

Pouliquen, P. O., Andreou, A. G., & Strohben, K. (1997). Winner-takes-all associative
memory: a Hamming distance vector quantizer. Analog Integrated Circuits and
Signal Processing , 13(1–2).

Preissl, R., Wong, T. M., Datta, P., Flickner, M., Singh, R., Esser, S. K., et al. (2012).
Compass: a scalable simulator for an architecture for cognitive computing.
In Proceedings of the 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’12. (pp. 1–11). IEEE Computer
Society.

Ramakrishnan, S., Hasler, P. E., & Gordon, C. (2012). Floating gate synapses with
spike-time-dependent plasticity. IEEE Transactions on Biomedical Circuits and
Systems, 5(3), 244–252.

Renaud, S., Tomas, J., Lewis, N., Bornat, Y., Daouzli, A., Rudolph,M., et al. (2010). PAX:
a mixed hardware/software simulation platform for spiking neural networks.
Neural Networks, 23(7), 905–916.

Rice, K. L., Bhuiyan, M. A., Taha, T. M., Vutsinas, C. N., & Smith, M. C. (2009).
FPGA implementation of Izhikevich spiking neurons for character recognition.
In Proceedings of the 2009 international conference on reconfigurable computing
and FPGAs, ReConFig’09. (pp. 451–456). IEEE.

Roska, T., & Chua, L. O. (1993). The CNN universal machine: an analogic array
computer. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing , 40(3), 163–173.

Rumelhart, D. E., McClelland, J. L., & Group, P. R. (1987). Parallel distributed
processing, foundations—Vol. 1. The MIT Press.

Saighi, S., Bornat, Y., Tomas, J., LeMasson, G., & Renaud, S. (2010). A library of analog
operators based on the Hodgkin–Huxley formalism for the design of tunable,
real-time, silicon neurons. IEEE Transactions on Biomedical Circuits and Systems,
5(1), 3–19.

Schemmel, J., Grubl, A., Meier, K., & Mueller, E. (2006). Implementing synaptic
plasticity in a VLSI spiking neural network model. In Proceedings of the 2006
international joint conference on neural networks, IJCNN (pp. 1–6).

Schreiber, S., Machens, C. K., Herz, A. V. M., & Laughlin, S. B. (2002). Energy-efficient
coding with discrete stochastic events. Neural Computation, 14(6), 1323–1346.

Serrano-Gotarredona, T., Andreou, A. G., & Linares-Barranco, B. (1999). AER
image filtering architecture for vision-processing systems. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, 46(9), 1064–1071.

Serrano-Gotarredona, T., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-
Vicente, R., Gomez-Rodriguez, F., et al. (2009). CAVIAR: A 45 k neuron, 5 M
synapse, 12 G connects/s AER hardware sensory-processing-learning-actuating
system for high-speed visual object recognition and tracking. IEEE Transactions
on Neural Networks, 20(9), 1417–1438.

Silver, R., Boahen, K. A., Grillner, S., Kopell, N., & Olsen, K. L. (2007). Neurotech for
neuroscience: unifying concepts, organizing principles, and emerging tools. The
Journal of Neuroscience, 27(44), 11807–11819.

Sivilotti, M. A. (1991). Wiring considerations in analog VLSI systems, with
application to field programmable networks. Ph.D. Thesis, Ph.D. Dissertation,
California Institute of Technology.

Song, S., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926.

Stanacevic, M., & Cauwenberghs, G. (2005). Micropower gradient flow acoustic
localizer. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(10),
2148–2157.

http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref78
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref79
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref80
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref81
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref82
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref83
http://www.opalkelly.com
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref87
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref88
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref89
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref90
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref91
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref92
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref93
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref98
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref100
http://www.humanbrainproject.eu/
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref103
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref104
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref106
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref107
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref108
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref109
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref110
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref111
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref112
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref113
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref114
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref115
http://www.nallatech.com
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref117
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref118
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref119
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref120
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref122
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref123
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref124
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref125
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref126
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref127
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref128
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref129
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref130
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref132
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref133
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref134
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref135
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref137
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref138


26 A.S. Cassidy et al. / Neural Networks 45 (2013) 4–26
Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural
plasticity of synaptic connectivity. Neuron, 34(2), 275–288.

Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing
memristor found. Nature, 453(7191), 80–83.

Swindale, N. V., Shoham, D., Grinvald, A., Bonhoeffer, T., & Hübener, M. (2000).
Visual cortex maps are optimized for uniform coverage. Nature Neuroscience,
3(8), 822–826.

Tezzaron, (2011). Tezzaron semiconductor. www.tezzaron.com. February.
Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical

Transactions of the Royal Society of London: Series B, Biological Sciences, 237(641),
37–72.

Varshney, L. R., Sjöström, P. J., & Chklovskii, D. B. (2006). Optimal informa-
tion storage in noisy synapses under resource constraints. Neuron, 52(3),
409–423.

Vittoz, E. A. (2005). Weak inversion for ultimate low-power logic. In Low-power
CMOS circuits: technology, logic design and CAD tools (pp. 1–18). CRC Press.

Vogelstein, R. J., Mallik, U., Culurciello, E., Cauwenberghs, G., & Etienne-Cummings,
R. (2007). Amultichip neuromorphic system for spike-based visual information
processing. Neural Computation, 19(9), 2281–2300.
Wawrzynek, J., Asanovic, K., Kingsbury, B., Johnson, D., Beck, J., &Morgan, N. (1996).
Spert-II: a vector microprocessor system. IEEE Computer , 29(3), 79–86.

Wawrzynek, J., Asanovic, K., & Morgan, N. (1993). The design of a neuro-
microprocessor. IEEE Transactions on Neural Networks, 4(3), 394–399.

Wen, Q., & Chklovskii, D. B. (2008). A cost-benefit analysis of neuronal morphology.
Journal of Neurophysiology, 99(5), 2320–2328.

Wen, Q., Stepanyants, A., Elston, G. N., Grosberg, A. Y., & Chklovskii, D. B. (2009).
Maximization of the connectivity repertoire as a statistical principle governing
the shapes of dendritic arbors. Proceedings of the National Academy of Sciences
of the United States of America, 106(30), 12536–12541.

Wijekoon, J. H. B., & Dudek, P. (2006). Simple analogue VLSI circuit of a cortical
neuron. In Proceedings of the 13th IEEE international conference on electronics,
circuits, and systems, ICECS (pp. 1344–1347).

Wolff, L. B., & Andreou, A. G. (1995). Polarization camera sensors. Image and Vision
Computing , 13, 497–510.

Xilinx, (2011). www.xilinx.com. February.
Yu, T., Sejnowski, T. J., & Cauwenberghs, G. (2011). Biophysical neural spiking,

bursting, and excitability dynamics in reconfigurable analog VLSI. IEEE
Transactions on Biomedical Circuits and Systems, 5(5), 420–429.

http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref139
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref140
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref141
http://www.tezzaron.com
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref143
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref144
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref145
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref146
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref147
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref148
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref149
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref150
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref152
http://www.xilinx.com
http://refhub.elsevier.com/S0893-6080(13)00159-7/sbref154

	Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization
	The computer and the brain
	Neuromorphic engineering: the formative years
	Neuromorphic engineering: the nano-CMOS Era

	Revisiting Marr's vision: employing new eyes
	Parallel processing under physical constraints
	From brain architectonics to silicon neural architectures

	Spiking neural arrays
	Spiking neural array architecture
	Dynamical spiking silicon neurons
	Izhikevich neuron model
	Leaky integrate and fire neuron model (LIF)


	Computational structures for STDP learning
	The STDP learning rule
	Multiplexed learning circuits
	Low-complexity learning circuits
	Extension to multiple synapses
	Experiments and results

	Neural architecture optimization
	Physical constraints
	Physical vs. multiplexed neurons
	Real-time speedup
	External RAM sizing
	Resource allocation analysis

	Simplified cost function for symmetric multiprocessing
	Implementation results
	Area model validation
	Cost model validation

	Discussion
	Conclusions
	Acknowledgments
	References


